Publications by authors named "Harumi Nakao"

Fragile X syndrome (FXS) is the foremost monogenic cause of autism spectrum disorder and intellectual disability, caused by FMR1 gene silencing. Here, we report that common marmosets carrying FMR1 mutation, a non-human primate model for FXS, share common features in behavioral and molecular phenotypes with patients with FXS. Founder mutants with markedly reduced fragile X messenger ribonucleoprotein expression display hyperactivity, spontaneous seizures, and transcriptome changes in synapse-related genes that overlap with those reported in patients with FXS.

View Article and Find Full Text PDF
Article Synopsis
  • Clonal hematopoiesis of indeterminate potential (CHIP) is shown to worsen outcomes in patients with nonischemic dilated cardiomyopathy (DCM) despite being well-known for its negative impacts on atherosclerotic disease.
  • Researchers analyzed 198 DCM patients using advanced genetic sequencing to find both germline mutations linked to cardiomyopathy and somatic mutations in CHIP driver genes, discovering 25 CHIP mutations in 22 patients.
  • The study concluded that CHIP is an independent risk factor for cardiac issues in DCM, contributing to worsened heart function and structural damage, and that genetic mutations can help predict patient prognosis.
View Article and Find Full Text PDF

Genome-wide association studies have identified several gene polymorphisms, including UBE2E2, associated with type 2 diabetes. Although UBE2E2 is one of the ubiquitin-conjugating enzymes involved in the process of ubiquitin modifications, the pathophysiological roles of UBE2E2 in metabolic dysfunction are not yet understood. Here, we showed upregulated UBE2E2 expression in the islets of a mouse model of diet-induced obesity.

View Article and Find Full Text PDF

Nonalcoholic fatty liver disease (NAFLD) and type 2 diabetes are interacting comorbidities of obesity, and increased hepatic de novo lipogenesis (DNL), driven by hyperinsulinemia and carbohydrate overload, contributes to their pathogenesis. Fatty acid synthase (FASN), a key enzyme of hepatic DNL, is upregulated in association with insulin resistance. However, the therapeutic potential of targeting FASN in hepatocytes for obesity-associated metabolic diseases is unknown.

View Article and Find Full Text PDF

Thermogenic brown and beige adipocytes counteract obesity by enhancing energy dissipation via uncoupling protein-1 (Ucp1). However, the effect of genetic variation on these cells, a major source of disease susceptibility, has been less well studied. Here we examined beige adipocytes from obesity-prone C57BL/6J (B6) and obesity-resistant 129X1/SvJ (129) mouse strains and identified a -regulatory variant rs47238345 that is responsible for differential Ucp1 expression.

View Article and Find Full Text PDF

Group I metabotropic glutamate receptors (mGluRs) include mGluR1 and mGluR5, which are coupled to the Gq family of heterotrimeric G-proteins and readily activated by their selective agonist 3,5-dihydroxyphenilglycine (DHPG). mGluR1 and mGluR5 exhibit nearly complementary distributions spatially or temporally in the central nervous system (CNS). In adult cerebellar Purkinje cells (PCs), mGluR1 is a dominant group I mGluR and mGluR5 is undetectable.

View Article and Find Full Text PDF

Genetic engineering of non-human primates, which are most closely related to humans, has been expected to generate ideal animal models for human genetic diseases. The common marmoset (Callithrix jacchus) is a non-human primate species adequate for the production of genetically modified animals because of their small body size and high reproductive capacity. Autologous embryo transfer (AET) is routinely utilized in assisted reproductive technologies for humans but not for experimental animals.

View Article and Find Full Text PDF

Classical eyeblink conditioning is a representative associative motor learning that requires both the cerebellar cortex and the deep cerebellar nucleus (DCN). Metabotropic glutamate receptor subtype 1 (mGluR1) is richly expressed in Purkinje cells (PCs) of the cerebellar cortex. Global mGluR1 knock-out (KO) mice show a significantly lower percentage of conditioned response (CR%) than wild-type mice in eyeblink conditioning, and the impaired CR% is restored by the introduction of mGluR1 in PCs.

View Article and Find Full Text PDF

In cerebellar Purkinje cells (PCs) type-1 metabotropic glutamate (mGlu1) receptors play a key role in motor learning and drive the refinement of synaptic innervation during postnatal development. The cognate mGlu5 receptor is absent in mature PCs and shows low expression levels in the adult cerebellar cortex. Here we found that mGlu5 receptors were heavily expressed by PCs in the early postnatal life, when mGlu1α receptors were barely detectable.

View Article and Find Full Text PDF

The CRISPR/Cas system has rapidly emerged recently as a new tool for genome engineering, and is expected to allow for controlled manipulation of specific genomic elements in a variety of species. A number of recent studies have reported the use of CRISPR/Cas for gene disruption (knockout) or targeted insertion of foreign DNA elements (knock-in). Despite the ease of simple gene knockout and small insertions or nucleotide substitutions in mouse zygotes by the CRISPR/Cas system, targeted insertion of large DNA elements remains an apparent challenge.

View Article and Find Full Text PDF

Neural circuits are shaped by elimination of early-formed redundant synapses during postnatal development. Retrograde signaling from postsynaptic cells regulates synapse elimination. In this work, we identified semaphorins, a family of versatile cell recognition molecules, as retrograde signals for elimination of redundant climbing fiber to Purkinje cell synapses in developing mouse cerebellum.

View Article and Find Full Text PDF

Limb-girdle muscular dystrophy type 2A (LGMD2A) is a genetic disease that is caused by mutations in the calpain 3 gene (CAPN3), which encodes the skeletal muscle-specific calpain, calpain 3 (also known as p94). However, the precise mechanism by which p94 functions in the pathogenesis of this disease remains unclear. Here, using p94 knockin mice (termed herein p94KI mice) in which endogenous p94 was replaced with a proteolytically inactive but structurally intact p94:C129S mutant protein, we have demonstrated that stretch-dependent p94 distribution in sarcomeres plays a crucial role in the pathogenesis of LGMD2A.

View Article and Find Full Text PDF

Semaphorin 3F (Sema3F) is a secreted type of the semaphorin family of axon guidance molecules. Sema3F and its receptor Neuropilin-2 (Npn-2) mRNAs were distributed in a mutually exclusive manner throughout mouse brain development. In order to examine physiological roles of Sema3F, we generated Sema3F knockout mice (KO) by gene targeting in embryonic stem (ES) cells.

View Article and Find Full Text PDF

Background: The formation of long-term memory (LTM) and the late phase of long-term potentiation (L-LTP) depend on macromolecule synthesis, translation, and transcription in neurons. vesl-1S (VASP/Ena-related gene upregulated during seizure and LTP, also known as homer-1a) is an LTP-induced immediate early gene. The short form of Vesl (Vesl-1S) is an alternatively spliced isoform of the vesl-1 gene, which also encodes the long form of the Vesl protein (Vesl-1L).

View Article and Find Full Text PDF

White adipocytes are unique in that they contain large unilocular lipid droplets that occupy most of the cytoplasm. To identify genes involved in the maintenance of mature adipocytes, we expressed dominant-negative PPARgamma in 3T3-L1 cells and performed a microarray screen. The fat-specific protein of 27 kDa (FSP27) was strongly downregulated in this context.

View Article and Find Full Text PDF

Generation of knockout mice with targeted mutations in desired genes is one of the most important technologies available for determining the functions of gene products in the brain. However, conventional knockout technology has limitations, such as when conventional knockout results in a lethal phenotype or when gene function at a certain developmental stage must be elucidated. To circumvent these limitations, a tetracycline-controlled gene expression system has been exploited to generate conditional mutant mice in which expression of desired genes can be switched on or off by oral administration of tetracycline derivatives.

View Article and Find Full Text PDF

We previously demonstrated that metabotropic glutamate receptor-subtype 1 knockout [mGluR1 (-/-)] mice showed ataxic gait, deficient long-term depression and impaired synapse elimination and these phenotypes were rescued by introduction of an mGluR1 transgene with Purkinje cell-specific promoter (mGluR1-rescue mice). However, roles of mGluR1 in the adult brain remain elusive, mainly due to lack of conventional and reproducible method to block mGluR1 expression at a certain developmental stage. Here, we established a versatile mouse line, mGluR1 conditional knockout (cKO) mice using the tetracycline-controlled gene expression system to understand the roles of mGluR1 in the adult brain.

View Article and Find Full Text PDF