Publications by authors named "Takanobu Nakazawa"

Anti-epileptics and diuretics, used for unapproved purposes, have been reported to ameliorate social deficits in individuals with autism spectrum disorder. However, the underlying neural mechanisms remain unclear. Here, we explored the effects of bumetanide, clonazepam, and phenytoin, all with clinically reported properties for improving social deficits, in a prenatal valproic acid exposure male mouse model.

View Article and Find Full Text PDF

Background And Purpose: Several G protein-coupled receptors (GPCRs) are known to homodimerise. Dimeric GPCRs may have different properties from their monomers, but the molecular basis and functional significance of GPCR dimerisation remain largely unknown. We recently found that signalling by the vasoactive intestinal peptide receptor, VIPR2, regulates breast cancer cell migration and proliferation.

View Article and Find Full Text PDF

Social behavior, defined as any mode of communication between conspecifics is regulated by a widespread network comprising multiple brain structures. The anterior cingulate cortex (ACC) serves as a hub region interconnected with several brain regions involved in social behavior. Because the ACC coordinates various behaviors, it is important to focus on a subpopulation of neurons that are potentially involved in social behavior to clarify the precise role of the ACC in social behavior.

View Article and Find Full Text PDF

Adeno-associated virus (AAV) vectors are potential tools for cell-type-selective gene delivery to the central nervous system. Although cell-type-specific enhancers and promoters have been identified for AAV systems, there is limited information regarding the effects of AAV genomic components on the selectivity and efficiency of gene expression. Here, we offer an alternative strategy to provide specific and efficient gene delivery to a targeted neuronal population by optimizing recombinant AAV genomic components, named TAREGET (TransActivator-Regulated Enhanced Gene Expression within Targeted neuronal populations).

View Article and Find Full Text PDF

Whole genome analysis has identified rare copy number variations (CNV) that are strongly involved in the pathogenesis of psychiatric disorders, and 3q29 deletion has been found to have the largest effect size. The 3q29 deletion mice model (3q29-del mice) has been established as a good pathological model for schizophrenia based on phenotypic analysis; however, circadian rhythm and sleep, which are also closely related to neuropsychiatric disorders, have not been investigated. In this study, our aims were to reevaluate the pathogenesis of 3q29-del by recreating model mice and analyzing their behavior and to identify novel new insights into the temporal activity and temperature fluctuations of the mouse model using a recently developed small implantable accelerometer chip, Nano-tag.

View Article and Find Full Text PDF

Vasoactive intestinal peptide (VIP) receptor 2 (VIPR2) is a G protein-coupled receptor that binds to Gαs, Gαi, and Gαq proteins to regulate various downstream signaling molecules, such as protein kinase A (PKA), phosphatidylinositol 3-kinase (PI3K), and phospholipase C. In this study, we examined the role of VIPR2 in cell cycle progression. KS-133, a newly developed VIPR2-selective antagonist peptide, attenuated VIP-induced cell proliferation in MCF-7 cells.

View Article and Find Full Text PDF
Article Synopsis
  • * Researchers found that (R)-ketamine, a specific form of ketamine, activates the anterior insular cortex (aIC) in mice that were socially isolated, helping to restore their social cognition.
  • * Inactivating the aIC negated the benefits of (R)-ketamine, indicating that its positive effects on social memory are tied to the proper functioning of this brain region.
View Article and Find Full Text PDF

The medial prefrontal cortex (mPFC) is associated with various behavioral controls via diverse projections to cortical and subcortical areas of the brain. Dysfunctions and modulations of this circuitry are related to the pathophysiology of schizophrenia and its pharmacotherapy, respectively. Clozapine is an atypical antipsychotic drug used for treatment-resistant schizophrenia and is known to modulate neuronal activity in the mPFC.

View Article and Find Full Text PDF

Alternatives to ketamine without psychotomimetic properties for the treatment of depression have attracted much attention. Here, we examined the anti-despair and anti-anhedonia effects of the ketamine metabolites (S)-norketamine ((S)-NK), (R)-NK, (2S,6S)-hydroxynorketamine, and (2R,6R)-hydroxynorketamine in a mouse model of depression induced by social isolation. All ketamine metabolites examined had acute (30 min after administration) anti-despair-like effects in the forced swim test, but only (S)-NK showed a long-lasting (1 week) effect.

View Article and Find Full Text PDF

Major depressive disorder (MDD) is among the most common mental illnesses. Serotonergic (5-HT) neurons are central to the pathophysiology and treatment of MDD. Repeatedly recalling positive episodes is effective for MDD.

View Article and Find Full Text PDF

Vasoactive intestinal peptide (VIP) receptor 2 (VIPR2) is a class B G protein-coupled receptor with the neuropeptide VIP as a ligand. Increased VIPR2 mRNA expression and/or VIPR2 gene copy number has been documented in several cancers including breast carcinoma. However, the pathophysiological role of increased VIPR2 in the proliferation of breast cancer cells remains largely unknown.

View Article and Find Full Text PDF

Phosphoinositide metabolism is critically involved in human cancer cell migration and metastatic growth. The formation of lamellipodia at the leading edge of migrating cells is regulated by metabolism of the inositol phospholipid PI(4,5)P into PI(3,4,5)P. The synthesized PI(3,4,5)P promotes the translocation of WASP family verprolin homologous protein 2 (WAVE2) to the plasma membrane and regulates guanine nucleotide exchange factor Rac-mediated actin filament remodeling.

View Article and Find Full Text PDF

Autism spectrum disorder (ASD) is a neurodevelopmental condition characterized by specific social symptoms, restricted interests, stereotyped repetitive behaviors, and delayed language development. The 3q29 microdeletion (3q29del), a recurrent copy number variant, confers a high risk for ASD and schizophrenia, and serves as an important pathological model for investigating the molecular pathogenesis of a large number of neurodevelopmental and psychiatric conditions. Recently, mouse models carrying a deletion of the chromosomal region corresponding to the human 3q29 region (Df/+ mice) were generated and demonstrated neurodevelopmental and psychiatric conditions associated behavioral abnormalities, pointing to the relevance of Df/+ mice as a model for these conditions with high construct and face validity.

View Article and Find Full Text PDF

Autism spectrum disorder (ASD) is a neurodevelopmental condition characterized by altered social communication, restricted interests, and stereotypic behaviors. Although the molecular and cellular pathogeneses of ASD remain elusive, impaired neural stem cell differentiation and neuronal migration during cortical development are suggested to be critically involved in ASD. ANK2, which encodes for a cytoskeletal scaffolding protein involved in recruiting membrane proteins into specialized membrane domains, has been identified as a high-confidence ASD risk gene.

View Article and Find Full Text PDF
Article Synopsis
  • The study investigates the role of the claustrum (CLA) in managing stress and anxiety, revealing it as a key area for brain communication during stress responses.
  • Researchers used advanced techniques like brain activation mapping and machine learning to show that CLA activation consistently indicates exposure to stress.
  • The findings suggest that manipulating CLA activity can influence anxiety behaviors, with silencing the CLA during stress enhancing resilience against chronic stress effects.
View Article and Find Full Text PDF

Schizophrenia was initially defined as "dementia praecox" by E. Kraepelin, which implies progressive deterioration. However, recent studies have revealed that early effective intervention may lead to social and functional recovery in schizophrenia.

View Article and Find Full Text PDF

Mice lacking pituitary adenylate cyclase-activating polypeptide (PACAP) display psychomotor abnormalities, most of which are ameliorated by atypical antipsychotics with serotonin (5-HT) 2A receptor (5-HT) antagonism. Heterozygous mutant mice show a significantly higher hallucinogenic response than wild-type mice to a 5-HT agonist. Endogenous PACAP may, therefore, affect 5-HT signaling; however, the underlying neurobiological mechanism for this remains unclear.

View Article and Find Full Text PDF

The underlying pathologies of psychiatric disorders, which cause substantial personal and social losses, remain unknown, and their elucidation is an urgent issue. To clarify the core pathological mechanisms underlying psychiatric disorders, in addition to laboratory-based research that incorporates the latest findings, it is necessary to conduct large-sample-size research and verify reproducibility. For this purpose, it is critical to conduct multicenter collaborative research across various fields, such as psychiatry, neuroscience, molecular biology, genomics, neuroimaging, cognitive science, neurophysiology, psychology, and pharmacology.

View Article and Find Full Text PDF

An increasing body of evidence suggests that impaired synapse development and function are associated with schizophrenia; however, the underlying molecular pathophysiological mechanism of the disease remains largely unclear. We conducted a family-based study combined with molecular and cellular analysis using induced pluripotent stem cell (iPSC) technology. We generated iPSCs from patients with familial schizophrenia, differentiated these cells into neurons, and investigated the molecular and cellular phenotypes of the patient's neurons.

View Article and Find Full Text PDF
Article Synopsis
  • * After 49 days of in vitro differentiation, hiPSC-neurons exhibited some pre- and postsynaptic markers, but postsynaptic marker expression was significantly lower than in normal human or rat brain tissues.
  • * Findings suggest that forming presynaptic structures alone is not enough for mature postsynaptic structure development, indicating a complex relationship between synaptic marker expression and functional synapse formation in hiPSC-neurons.
View Article and Find Full Text PDF

Schizophrenia is a mental illness that involves both genetic and environmental factors. Clozapine, an atypical antipsychotic, is a well-established therapy for treatment-resistant schizophrenia. In this study, we focused on a set of monozygotic twins with treatment-resistant schizophrenia in which one twin effectively responded to clozapine treatment and the other did not.

View Article and Find Full Text PDF

Induced pluripotent stem cell (iPSC) technology, which enables the direct analysis of neuronal cells with the same genetic background as patients, has recently garnered significant attention in schizophrenia research. This technology is important because it enables a comprehensive interpretation using mice and human clinical research and cross-species verification. Here I review recent advances in modeling schizophrenia using iPSC technology, alongside the utility of disease mouse models.

View Article and Find Full Text PDF