Introduction: During malnutrition, mammalian reproductive functions are suppressed by inhibition of the pulsatile release of gonadotropin-releasing hormone (GnRH)/gonadotropins. This study aimed to investigate whether nociceptin-opioid-related nociceptin receptor 1 (OPRL1) signaling mediates glucoprivic suppression of luteinizing hormone (LH) pulses in female rats.
Methods And Results: RNA sequencing analysis of tdTomato-positive arcuate (ARC) kisspeptin neurons obtained from Kiss1 (kisspeptin gene)-Cre/Cre-dependent tdTomato reporter female rats showed that Oprl1 messenger RNA expression was evident in ARC kisspeptin neurons.
Hypothalamic arcuate (ARC) kisspeptin neurons are considered the gonadotropin-releasing hormone pulse generator in rats. In virgin rats, the expression of the ARC kisspeptin gene (Kiss1) is repressed by proestrous levels of estradiol-17β (high E2) but not by diestrous levels of E2 (low E2). In lactating rats, ARC Kiss1 expression is repressed by low E2 during late lactation.
View Article and Find Full Text PDFOvulation disorders are a major cause of low pregnancy rates and infertility in humans and livestock. Kisspeptin neurons located in the anteroventral periventricular nucleus (AVPV) are responsible for the generation of the gonadotropin-releasing hormone (GnRH)/luteinizing hormone (LH) surge and the consequent ovulation in female rodents. The present study aimed to examine whether purinergic neurons are direct upstream stimulators of AVPV kisspeptin neurons that trigger the GnRH/LH surge and consequent ovulation in Kiss1-Cre rats.
View Article and Find Full Text PDFIn mammals, secretion of tonic (pulsatile) gonadotropin-releasing hormone (GnRH)/luteinizing hormone (LH) is often suppressed during lactation. Suppression of GnRH/LH pulses in lactating dams is assumed to be caused by suckling stimuli and a chronic negative energy balance due to milk production. The present study aimed to investigate whether the central enkephalin-δ opioid receptor (DOR) signaling mediated the suppression of LH secretion by acute suckling stimuli and/or chronic negative energy balance due to milk production in rats during late lactation when dams were under a heavy energy demand.
View Article and Find Full Text PDFObjective The long-term impact of personalized diet and exercise programs for steatotic liver disease (SLD) remains unclear. Materials The subjects of this retrospective cohort study included 104 consecutive Japanese patients with SLD. The long-term treatment efficacy of personalized diet and exercise treatment was evaluated two years after the start of observation.
View Article and Find Full Text PDFDysfunction of central serotonergic neurons is known to cause depressive disorders in humans, who often show reproductive and/or glucose metabolism disorders. This study examined whether dorsal raphe (DR) serotonergic neurons sense high glucose availability to upregulate reproductive function via activating hypothalamic arcuate (ARC) kisspeptin neurons (= KNDy neurons), a dominant stimulator of gonadotropin-releasing hormone (GnRH)/gonadotropin pulses, using female rats and goats. RNA-seq and histological analysis revealed that stimulatory serotonin-2C receptor (5HT2CR) was mainly expressed in the KNDy neurons in female rats.
View Article and Find Full Text PDFThe neuroendocrine system that controls the preovulatory surge of gonadotropin-releasing hormone (GnRH)/luteinizing hormone (LH), which triggers ovulation in female mammals, is sexually differentiated in rodents. A transient increase in circulating testosterone levels in male rats within a few hours of birth is primarily responsible for the defeminization of anteroventral periventricular nucleus (AVPV) kisspeptin neurons, which are critical regulators of the GnRH/LH surge. The present study aimed to determine whether neonatal estradiol-17β (E2) converted from testosterone by aromatase primarily causes the defeminization of AVPV kisspeptin neurons and the surge of GnRH/LH in male rodents.
View Article and Find Full Text PDFThe gonadotropin-releasing hormone (GnRH) pulse and surge are considered to be generated by arcuate kisspeptin/neurokinin B/dynorphin A (KNDy) neurons and anteroventral periventricular nucleus (AVPV) kisspeptin neurons, respectively, in female rodents. The majority of KNDy and AVPV kisspeptin neurons express κ-opioid receptors (KORs, encoded by Oprk1) in female rodents. Thus, this study aimed to investigate the effect of a conditional Oprk1-dependent Kiss1 deletion in kisspeptin neurons on the luteinizing hormone (LH) pulse/surge and fertility using Kiss1-floxed/Oprk1-Cre rats, in which Kiss1 was deleted in cells expressing or once expressed the Oprk1/Cre.
View Article and Find Full Text PDFHypothalamic kisspeptin neurons are master regulators of mammalian reproduction via direct stimulation of gonadotropin-releasing hormone and consequent gonadotropin release. Here, we generated novel Kiss1 (kisspeptin gene)-Cre rats and investigated the developmental changes and sex differences in visualized Kiss1 neurons of Kiss1-Cre-activated tdTomato reporter rats. First, we validated Kiss1-Cre rats by generating Kiss1-expressing cell-specific Kiss1 knockout (Kiss1-KpKO) rats, which were obtained by crossing the current Kiss1-Cre rats with Kiss1-floxed rats.
View Article and Find Full Text PDFGonadal function is often suppressed during lactation in mammals including rodents, ruminants, and primates. This suppression is thought to be mostly due to the inhibition of the tonic (pulsatile) release of gonadotropin-releasing hormone (GnRH) and consequent gonadotropin. Accumulating evidence suggests that kisspeptin neurons in the arcuate nucleus (ARC) play a critical role in the regulation of pulsatile GnRH/gonadotropin release, and kisspeptin mRNA (Kiss1) and/or kisspeptin expression in the ARC are strongly suppressed by the suckling stimuli in lactating rats.
View Article and Find Full Text PDFLactational anestrus, characterized by the suppression of pulsatile gonadotropin-releasing hormone (GnRH)/luteinizing hormone (LH) release, would be a strategic adaptation to ensure survival by avoiding pregnancy during lactation in mammals. In the present article, we first provide a current understanding of the central regulation of reproduction in mammals, i.e.
View Article and Find Full Text PDFOvulation disorders are a serious problem for humans and livestock. In female rodents, kisspeptin neurons in the anteroventral periventricular nucleus (AVPV) are responsible for generating a luteinizing hormone (LH) surge and consequent ovulation. Here, we report that adenosine 5-triphosphate (ATP), a purinergic receptor ligand, is a possible neurotransmitter that stimulates AVPV kisspeptin neurons to induce an LH surge and consequent ovulation in rodents.
View Article and Find Full Text PDFProtein-protein interactions (PPIs) are recognized as important targets in drug discovery. The characteristics of molecules that inhibit PPIs differ from those of small-molecule compounds. We developed a novel chemical library database system (DLiP) to design PPI inhibitors.
View Article and Find Full Text PDFEnergy availability is an important regulator of reproductive function at various reproductive phases in mammals. Glucoprivation induced by 2-deoxy-D-glucose (2DG), an inhibitor of glucose utilization, as an experimental model of malnutrition suppresses the pulsatile release of GnRH/LH and induces gluconeogenesis. The present study was performed with the aim of examining whether enkephalin-δ-opioid receptor (DOR) signaling mediates the suppression of pulsatile GnRH/LH release and gluconeogenesis during malnutrition.
View Article and Find Full Text PDFAdverse drug events due to drug-drug interactions can be prevented by avoiding concomitant use of causative drugs; therefore, it is important to understand drug combinations that cause drug-drug interactions. Although many attempts to identify drug-drug interactions from real-world databases such as spontaneous reporting systems have been performed, little is known about drug-drug interactions caused by three or more drugs in polypharmacy, i.e.
View Article and Find Full Text PDFFollicular development and ovulation are profoundly suppressed during lactation. This suppression is suggested to be due to the suckling-induced inhibition of the kisspeptin gene (the master regulator of reproduction) in the arcuate nucleus (ARC) and subsequent inhibition of pulsatile gonadotropin-releasing hormone (GnRH)/gonadotropin release. The present study examined whether hypothalamic κ-opioid receptor (KOR) or µ-opioid receptor (MOR) signaling mediates the suppression of luteinizing hormone (LH) release induced by suckling stimulus during late lactation in rats.
View Article and Find Full Text PDFThe present study established techniques to induce pseudopregnancy, in vitro oocyte cultures from pronuclear to 2- to 4-cell stages, and embryo transfer in musk shrews, a reflex ovulator. Offspring were subsequently obtained by transferring in vivo-developed or in vitro-cultured embryos. Female musk shrews received human chronic gonadotropin (hCG), with or without mating stimuli, from vasectomized males to produce pseudopregnant recipients.
View Article and Find Full Text PDFFront Neurosci
August 2022
Endogenous opioid peptides have attracted attention as critical neuropeptides in the central mechanism regulating female reproduction ever since the discovery that arcuate dynorphin neurons that coexpress kisspeptin and neurokinin B (NKB), which are also known as kisspeptin/neurokinin B/dynorphin (KNDy) neurons, play a role as a master regulator of pulsatile gonadotropin-releasing hormone (GnRH) release in mammals. In this study, we first focus on the role of dynorphin released by KNDy neurons in the GnRH pulse generation. Second, we provide a historical overview of studies on endogenous opioid peptides.
View Article and Find Full Text PDFRecent technological innovations have led to the development of methods for the rapid identification of high-affinity macrocyclic peptides for a wide range of targets; however, it is still challenging to achieve the desired activity and membrane permeability at the same time. Here, we propose a novel small molecule lead discovery strategy, ″Peptide-to-Small Molecule″, which is a combination of rapid identification of high-affinity macrocyclic peptides peptide display screening followed by pharmacophore-guided design of small molecules, and demonstrate the applicability using nicotinamide -methyltransferase (NNMT) as a target. Affinity selection by peptide display technology identified macrocyclic peptide that exhibited good enzymatic inhibitory activity but no cell-based activity.
View Article and Find Full Text PDFObjectives: A simple check test method was designed to confirm whether a 2,4-dinitrophenylhydrazine (DNPH) filter for formaldehyde can be used to measure other compounds.
Methods: Sample mixtures containing the same concentrations of formaldehyde, acetaldehyde, and acetone were spiked to the DNPH-filter, extracted, and then measured using high performance liquid chromatography with photodiode array detector (HPLC-PDA). The amounts of DNPH-derivatives versus the amounts of spiked samples were then plotted.
Reproductive function is suppressed during lactation owing to the suckling-induced suppression of the kisspeptin gene (Kiss1) expression in the arcuate nucleus (ARC) and subsequent suppression of luteinizing hormone (LH) release. Our previous study revealed that somatostatin (SST) neurons mediate suckling-induced suppression of LH release via SST receptor 2 (SSTR2) in ovariectomized lactating rats during early lactation. This study examined whether central SST-SSTR2 signaling mediates the inhibition of ARC Kiss1 expression and LH release in lactating rats during late lactation and whether the inhibition of glutamatergic neurons, stimulators of LH release, is involved in the suppression of LH release mediated by central SST-SSTR2 signaling in lactating rats.
View Article and Find Full Text PDFGene editing in mammalian zygotes enables us to generate genetically modified animals rapidly and efficiently. In this study, we compare multiple gene targeting strategies in rat zygotes by generating a novel knock-in reporter rat line to visualize the expression pattern of transcription factor AP-2 gamma (Tfap2c). The targeting vector is designed to replace the stop codon of Tfap2c with T2A-tdTomato sequence.
View Article and Find Full Text PDFFront Neuroendocrinol
January 2022
Accumulating findings during the past decades have demonstrated that the hypothalamic arcuate kisspeptin neurons are supposed to be responsible for pulsatile release of gonadotropin-releasing hormone (GnRH) to regulate gametogenesis and steroidogenesis in mammals. The arcuate kisspeptin neurons express neurokinin B (NKB) and dynorphin A (Dyn), thus, the neurons are also referred to as KNDy neurons. In the present article, we mainly focus on the cellular and molecular mechanisms underlying GnRH pulse generation, that is focused on the action of NKB and Dyn and an interaction between KNDy neurons and astrocytes to control GnRH pulse generation.
View Article and Find Full Text PDF