Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Iron (Fe) is the fourth most abundant element on earth and represents an essential nutrient for life. As a fundamental mineral element for cell growth and development, iron is available for uptake as ferric ions, which are usually oxidized into complex oxyhydroxide polymers, insoluble under aerobic conditions. In these conditions, the bioavailability of iron is dramatically reduced. As a result, microorganisms face problems of iron acquisition, especially under low concentrations of this element. However, some microbes have evolved mechanisms for obtaining ferric irons from the extracellular medium or environment by forming small molecules often regarded as siderophores. Siderophores are high affinity iron-binding molecules produced by a repertoire of proteins found in the cytoplasm of cyanobacteria, bacteria, fungi, and plants. Common groups of siderophores include hydroxamates, catecholates, carboxylates, and hydroximates. The hydroxamate siderophores are commonly synthesized by fungi. L-ornithine is a biosynthetic precursor of siderophores, which is synthesized from multimodular large enzyme complexes through non-ribosomal peptide synthetases (NRPSs), while siderophore-Fe chelators cell wall mannoproteins (FIT1, FIT2, and FIT3) help the retention of siderophores. , for example, can express these proteins in two genetically separate systems (reductive and nonreductive) in the plasma membrane. These proteins can convert Fe (III) into Fe (II) by a ferrous-specific metalloreductase enzyme complex and flavin reductases (FREs). However, regulation of the siderophore through Fur Box protein on the DNA promoter region and its activation or repression depend primarily on the Fe availability in the external medium. Siderophores are essential due to their wide range of applications in biotechnology, medicine, bioremediation of heavy metal polluted environments, biocontrol of plant pathogens, and plant growth enhancement.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8781417PMC
http://dx.doi.org/10.3390/jof8010021DOI Listing

Publication Analysis

Top Keywords

siderophores
8
biosynthesis pathways
4
pathways transport
4
transport mechanisms
4
mechanisms biotechnological
4
biotechnological applications
4
applications fungal
4
fungal siderophores
4
iron
4
siderophores iron
4

Similar Publications

Endophytic Fusarium isolates from Ceratozamia mirandae enhance tomato growth, suppress pathogenic fungi, and induce protection against Botrytis cinerea.

Rev Argent Microbiol

September 2025

IPICYT, División de Biología Molecular, Laboratorio de Genómica Funcional y Comparativa, Camino a la Presa San José 2055, Col. Lomas 4 Sección, 78216 San Luis Potosí, SLP, Mexico.

Fungal diseases in agricultural crops cause economic losses, with chemical control being the conventional method to manage them. However, this approach negatively impacts both the environment and human health. This study focused on endophytic fungi isolated from the roots of Ceratozamia mirandae in the Mexican locality of Juan Sabines (Villa Corzo, Chiapas).

View Article and Find Full Text PDF

Tackling microbial iron homeostasis: novel antimicrobial strategies.

Trends Pharmacol Sci

September 2025

Department of Internal Medicine II, Infectious Diseases, Immunology, Rheumatology, Medical University of Innsbruck, Innsbruck, Austria.

The escalating threat of antimicrobial resistance demands innovative therapeutic strategies beyond classical targets. Recent insights into the mechanisms of bacterial iron acquisition - ranging from siderophores and heme uptake to ferrous iron transport - have enabled new approaches to impair pathogen growth and virulence. These pathways are increasingly being harnessed for therapeutic gain.

View Article and Find Full Text PDF

Synergistic effect of oxalic acid and siderophore on uranium fractions and microbial community traits in rhizosphere soil enhances uranium accumulation in plant roots.

Sci Total Environ

September 2025

Key Discipline Laboratory for National Defense for Biotechnology in Uranium Mining and Hydrometallurgy, University of South China, Heng yang 421001, Hunan, China; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Marine Science, State Key Laboratory for Biocontrol, Sun

Chelating agent contributes to the remediation of heavy metal contaminations, but it remains unclear how they affect the transformation of radioactive pollutants and microbial traits in phytoremediation. We comprehensively investigated on the uranium (U) speciation and microbial communities in the rhizosphere of Macleaya cordata, Paspalum scrobiculatum and Bamboo willow, and analyzed the accumulation of U in the three plants after the addition of chelating agents including 0.1 mmol kg siderophore (DFO) and 2.

View Article and Find Full Text PDF

is the main cause of soft rot in kiwifruit, significantly reducing both yield and quality. While chemical treatments are commonly used, their effectiveness is limited and they may pose environmental risks. As a result, biological control using Bacillus species has emerged as a promising alternative.

View Article and Find Full Text PDF

Introduction: Wheat is one of the three major cereal crops in the world and is susceptible to the effects of drought stress. Rhizosphere microorganisms can affect plant growth by altering nutrient absorption and resistance to stress. Studying the plant-microbe interaction under drought stress to reveal the impact of soil microorganisms on plant growth in dry land has important scientific significance.

View Article and Find Full Text PDF