Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

In resource-limited settings, where pneumocystosis in immunocompromised patients is infrequently observed, cost-efficient, reliable, and sensitive approaches for the diagnostic identification of in human tissue samples are desirable. Here, an in-house fluorescence in situ hybridization assay was comparatively evaluated against Grocott's staining as a reference standard with 30 paraffin-embedded tissue samples as well as against in-house real-time PCR with 30 respiratory secretions from immunocompromised patients with clinical suspicion of pneumocystosis. All pneumocystosis patients included in the study suffered from HIV/AIDS. Compared with Grocott's staining as the reference standard, sensitivity of the FISH assay was 100% (13/13), specificity was 41% (7/17), and the overall concordance was 66.7% with tissue samples. With respiratory specimens, sensitivity was 83.3% (10/12), specificity was 100% (18/18), and the overall concordance was 93.3% as compared with real-time PCR. It remained unresolved to which proportions sensitivity limitations of Grocott's staining or autofluorescence phenomena affecting the FISH assay accounted for the recorded reduced specificity with the tissue samples. The assessment confirmed FISH in lung tissue as a highly sensitive screening approach; however, dissatisfying specificity in paraffin-embedded biopsies calls for confirmatory testing with other techniques in case of positive FISH screening results. In respiratory secretions, acceptable sensitivity and excellent specificity were demonstrated for the diagnostic application of the -specific FISH assay.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8778293PMC
http://dx.doi.org/10.3390/jof8010013DOI Listing

Publication Analysis

Top Keywords

tissue samples
16
grocott's staining
12
fish assay
12
immunocompromised patients
8
staining reference
8
reference standard
8
real-time pcr
8
respiratory secretions
8
fish
6
tissue
5

Similar Publications

Galectin-10(Gal-10)/CLC(Charcot-Leyden crystal) has been discovered to be related to ECRSwNP characterized by high eosinophilic infiltration. We aimed to investigate the effects of Gal-10 on ECRSwNP. A total of 36 tissue samples were collected, including 11 ECRSwNP samples, 15 non-ECRSwNP samples, and 10 Control samples.

View Article and Find Full Text PDF

Invasive ductal carcinoma (IDC) is a major type of breast cancer. The utilization of inhibitors targeting histone methyltransferases introduces novel therapeutic avenues for the treatment of cancer. Immunohistochemistry, Western blot, and reverse transcription quantitative polymerase chain reaction experiments were applied to assess the levels of EHMT2 in IDC and adjacent tissues.

View Article and Find Full Text PDF

While human autopsy samples have provided insights into pulmonary immune mechanisms associated with severe viral respiratory diseases, the mechanisms that contribute to a clinically favorable resolution of viral respiratory infections remain unclear due to the lack of proper experimental systems. Using mice co-engrafted with a genetically matched human immune system and fetal lung xenograft (fLX), we mapped the immunological events defining successful resolution of SARS-CoV-2 infection in human lung tissues. Viral infection is rapidly cleared from fLX following a peak of viral replication, histopathological manifestations of lung disease and loss of AT2 program, as reported in human COVID-19 patients.

View Article and Find Full Text PDF

Enoxaparin sodium (ES), a low molecular weight heparin derivative, has recently been recognized for its diverse biological activities. In particular, the ability of heparin to modulate inflammation has been utilized to enhance the biocompatibility of bone implant materials. In this study, we utilized poly (methyl methacrylate) (PMMA), a drug loading bone implant material, as a matrix and combined this with enoxaparin sodium (ES) to create enoxaparin sodium PMMA cement (ES-PMMA) to investigate the regulatory effects of ES on inflammatory responses in bone tissue from an animal model.

View Article and Find Full Text PDF

Electroporation is a promising technology utilizing electrical pulses for macromolecule delivery and soft-tissue ablation, with applications that include next-generation prophylactics and the treatment of genetic diseases such as cancer. This study demonstrates a high-throughput capable 3D tissue culture model for quantification of the reversible and irreversible electroporation thresholds for a given electroporation protocol. By using a non-uniform electric field and analyzing the spatial distribution of transfected cells, both reversible and irreversible thresholds can be identified within a single sample, increasing the efficiency at which electroporation protocols can be characterized, especially for in vivo translation.

View Article and Find Full Text PDF