Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Disease, storms, ocean warming, and pollution have caused the mass mortality of reef-building corals across the Caribbean over the last four decades. Subsequently, stony corals have been replaced by macroalgae, bacterial mats, and invertebrates including soft corals and sponges, causing changes to the functioning of Caribbean reef ecosystems. Here we describe changes in the absolute cover of benthic reef taxa, including corals, gorgonians, sponges, and algae, at 15 fore-reef sites (12-15m depth) across the Belizean Barrier Reef (BBR) from 1997 to 2016. We also tested whether Marine Protected Areas (MPAs), in which fishing was prohibited but likely still occurred, mitigated these changes. Additionally, we determined whether ocean-temperature anomalies (measured via satellite) or local human impacts (estimated using the Human Influence Index, HII) were related to changes in benthic community structure. We observed a reduction in the cover of reef-building corals, including the long-lived, massive corals Orbicella spp. (from 13 to 2%), and an increase in fleshy and corticated macroalgae across most sites. These and other changes to the benthic communities were unaffected by local protection. The covers of hard-coral taxa, including Acropora spp., Montastraea cavernosa, Orbicella spp., and Porites spp., were negatively related to the frequency of ocean-temperature anomalies. Only gorgonian cover was related, negatively, to our metric of the magnitude of local impacts (HII). Our results suggest that benthic communities along the BBR have experienced disturbances that are beyond the capacity of the current management structure to mitigate. We recommend that managers devote greater resources and capacity to enforcing and expanding existing marine protected areas and to mitigating local stressors, and most importantly, that government, industry, and the public act immediately to reduce global carbon emissions.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8765652PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0249155PLOS

Publication Analysis

Top Keywords

benthic communities
12
belizean barrier
8
barrier reef
8
reef-building corals
8
taxa including
8
marine protected
8
protected areas
8
ocean-temperature anomalies
8
changes benthic
8
orbicella spp
8

Similar Publications

Microbial communities play a crucial role in the functioning of freshwater ecosystems but are continuously threatened by climate change and anthropogenic activities. Elevated temperatures and salinisation are particularly challenging for freshwater habitats, but little is known about how microbial communities respond to the simultaneous exposure to these stressors. Here, we use mesocosm experiments and amplicon sequencing data to investigate the responses of pelagic and benthic microbial communities to temperature and salinity increases, both individually and in combination.

View Article and Find Full Text PDF

Due to climate change, sea ice more commonly retreats over the shelf breaks in the Arctic Ocean, impacting sea ice-pelagic-benthic coupling in the deeper basins. Nitrogen fixation (the reduction of dinitrogen gas to bioavailable ammonia by microorganisms called diazotrophs) is reported from Arctic shelf sediments but is unknown from the Arctic deep sea. We sampled five locations of deep-sea (900-1500 m) surface sediments in the central ice-covered Arctic Ocean to measure potential nitrogen fixation through long-term (> 280 days) stable-isotope (N) incubations and to study diazotroph community composition through amplicon sequencing of the functional marker gene nifH.

View Article and Find Full Text PDF

Dense aggregations of species in the family Pinnidae give soft substrata a specific characterization. They may influence the biological and physical properties of the surrounding sediments. Bottom-trawl samplings performed in the Sea of Marmara revealed populations of a large pinnid species, particularly at depths of 40-45 m in soft substrata.

View Article and Find Full Text PDF

Marine heatwaves are intensifying due to global warming and increasingly drive mass mortality events in shallow benthic ecosystems. Marine invertebrates host diverse microbial communities that contribute to their health and resilience, yet microbiome responses under thermal stress remain poorly characterised across most taxa. Here, we characterise the microbiome composition in colonies of the common Mediterranean bryozoan Myriapora truncata at two depths (13 and 17 m) following the extreme 2022 marine heatwave.

View Article and Find Full Text PDF

In this study, we trained an object-detection model to classify 17 benthic invertebrate taxa in archived footage of a study site on the northern west coast of Sweden (a wall section of the Koster Fjord) within the Swedish marine protected area Kosterhavet National Park. The model displayed a mean average precision score of 0.738 and was applied to footage from 1997 to 2023, generating a dataset of 72,369 occurrence records.

View Article and Find Full Text PDF