98%
921
2 minutes
20
Microplastics (MPs) are small (< 5 mm) plastic particles that are widely found in marine, freshwater, terrestrial and atmospheric environments. Due to their prevalence and persistence, MPs are considered an emerging contaminant of environmental concern. The separation and quantitation of MPs from freshwater sediments is a challenging and critical issue. It is necessary to identify the fate and sources of MPs in the environment, minimise their release and adverse effects. Compared to marine sediments, standardised methods for extracting and estimating the amount of MPs in freshwater sediments are relatively limited. The present study focuses on MP recovery efficiency of four commonly used salt solutions (NaCl, NaI, CaCl and ZnCl) for isolating MPs during the density separation step from freshwater sediment. Known combinations of artificial MP particles (PS, PE, PVC, PET, PP and HDPE) were spiked into standard river sediment. Extraction using NaI, ZnCl and NaCl solutions resulted in higher recovery rates from 37 to 97% compared to the CaCl solution (28-83%) and varied between polymer types. Low-density MPs (PE, HDPE, PP and PS) were more effectively recovered (> 87%) than the denser polymers (PET and PVC: 37 to 88.8%) using NaCl, NaI and ZnCl solutions. However, the effective flotation of ZnCl and NaI solutions is relatively expensive and unsafe to the environment, especially in the context of developing countries. Therefore, considering the efficiency, cost and environmental criteria, NaCl solution was selected. The protocol was then tested by extracting MPs from nine riverine sediment samples from the Red River Delta. Sediments collected from urban rivers were highly polluted by MPs (26,000 MPs items·kg DW) compared to sediments located downstream. Using a NaCl solution was found to be effective in this case study and might also be used in long-term and large-scale MP monitoring programmes in Vietnam.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s10661-021-09664-0 | DOI Listing |
Mar Environ Res
September 2025
Department of Earth Sciences, National Taiwan Normal University, Taipei, Taiwan.
The northern South China Sea (SCS) shelf and southern Taiwan Strait (TS) are dynamic marginal seas influenced by both freshwater discharge from the Pearl River and seasonal coastal upwelling. These interacting hydrological forces shape ecological gradients that affect marine planktonic communities. Planktonic foraminiferal assemblages were analyzed from plankton tow and surface sediment samples collected during three cruises (2018, 2020, and 2022) along a ∼1000 km transect extending from the Pearl River estuary to the southern TS.
View Article and Find Full Text PDFJ Environ Manage
September 2025
State Key Laboratory of Regional Environment and Sustainability, School of Environment, Beijing Normal University, Beijing,100875, China. Electronic address:
Rivers reflect natural-anthropogenic interactions, yet how urbanization affects riverine bacterial communities along rural-urban gradients is poorly understood. This study examined bacterial diversity and assembly mechanisms along such a gradient of river sediments. Results showed that bacterial diversity significantly decreased with increasing urban influence.
View Article and Find Full Text PDFJ Hazard Mater
September 2025
Division of Environmental Science and Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea. Electronic address:
While mercury (Hg) concentration and isotope analyses play pivotal roles in understanding contamination levels and Hg sources, complex hydrodynamics often obscure Hg transport pathways from source to sink. We applied hydrodynamic modeling with Hg stable isotopes to unravel source-specific contamination processes and propose effective management strategies in an estuarine system (Yeongil Bay) impacted by Hg-contaminated riverine input (Hyeongsan River) in Korea. Sediment isotope data revealed contributions of three sources: legacy Hg from the river, regional background Hg, and atmospheric Hg sources.
View Article and Find Full Text PDFJ Environ Manage
September 2025
Key Lab of Basin Water Resource and Eco-Environmental Science in Hubei Province, Basin Water Environmental Research Department, Changjiang River Scientific Research Institute, No.23 Huangpu Road, Wuhan, 430010, PR China; Innovation Team for Basin Water Environmental Protection and Governance of Chan
Small cascade dams drive spatial divergence in the composition of dissolved organic matter (DOM) in local sediments. Taking Xixi River in the southeast of China, a representative small cascade-dammed watershed, as an example, this study explored the spatial variations of DOM components and its interactions with microbial communities under the influence of cascade dams. Results revealed that DOM composition differed significantly, i.
View Article and Find Full Text PDFJ Environ Manage
September 2025
Ecological Modelling Laboratory, Department of Physical and Environmental Sciences, University of Toronto Scarborough, Toronto, Ontario, M1C 1A4, Canada. Electronic address:
Agriculture intensification represents an essential strategy to ensure food security for the growing human population, but it also poses considerable environmental concerns. Climate change and associated projections of an increased frequency of extreme precipitation and runoff events may amplify nutrient dynamics along the watershed-lake continuum, and could further exacerbate the poor water quality conditions downstream. Identifying hotspot locations with higher propensity for sediment and nutrient export and designing effective mitigation measures at the source is more critical than ever.
View Article and Find Full Text PDF