Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

() is commonly used in African folk medicine to treat cardiovascular ailments. In the present study, we investigated the cytotoxic effect of the leaf methanol extract of (CZE) using mouse pluripotent stem cells (mPSCs). mPSCs and their cardiomyocytes (CMs) derivatives were exposed to CZE at different concentrations. Cell proliferation, differentiation capacity, and beating activity were assessed using xCELLigence system and microscopy for embryoid body (EB) morphology. Expression of markers associated with major cardiac cell types was examined by immunofluorescence and quantitative RT-PCR. Intracellular reactive oxygen species (ROS) levels were assessed by dichlorodihydrofluorescein diacetate staining. The results showed that the plant extract significantly reduced cell proliferation and viability in a concentration- and time-dependent manner. This was accompanied by a decrease in EB size and an increase in intracellular ROS. High concentrations of CZE decreased the expression of some important cardiac biomarkers. In addition, CZE treatment was associated with poor sarcomere structural organization of CMs and significantly decreased the amplitude and beating rate of CMs, without affecting CMs viability. These results indicate that CZE might be toxic at high concentrations in the embryonic stages of stem cells and could modulate the contracting activity of CMs.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8704771PMC
http://dx.doi.org/10.3390/ph14121208DOI Listing

Publication Analysis

Top Keywords

stem cells
12
leaf methanol
8
methanol extract
8
pluripotent stem
8
cell proliferation
8
high concentrations
8
cze
5
cms
5
assessment vitro
4
vitro cytotoxicity
4

Similar Publications

Deciphering the molecular landscape of acute myeloid leukemia initiation and relapse: a systems biology approach.

Med Oncol

September 2025

Division of Hematology and Blood Bank, Department of Medical Laboratory Sciences, School of Paramedical Sciences, Shiraz University of Medical Sciences, Shiraz, Iran.

Acute Myeloid Leukemia (AML) patient-derived Mesenchymal Stem Cells (MSCs) behave differently than normal ones, creating a more protective environment for leukemia cells, making relapse harder to prevent. This study aimed to identify prognostic biomarkers and elucidate relevant biological pathways in AML by leveraging microarray data and advanced bioinformatics techniques. We retrieved the GSE122917 dataset from the NCBI Gene Expression Omnibus and performed differential expression analysis (DEA) within R Studio to identify differentially expressed genes (DEGs) among healthy donors, newly diagnosed AML patients, and relapsed AML patients.

View Article and Find Full Text PDF

Background: Several studies have suggested that adult human dermal fibroblasts (HDFa) may be a potential alternative source to mesenchymal stem cells for cell therapies. This study aims to characterize HDFa, adipose-derived stem cells (ADMSCs) and dental pulp stem cells (DPSCs) to investigate their proliferation, differentiation potential, mitochondrial respiration, and metabolomic profile. We identified molecules and characteristics that would differentiate MSCs from different sources or confirm their uniformity.

View Article and Find Full Text PDF

Limited vascularization and ischemia are major contributors to the chronicity of wounds, such as ulcers and traumatic injuries, which impose significant medical, social, and economic burdens. These challenges are particularly pronounced in patients with spinal cord injury (SCI), a disabling condition associated with vascular dysfunction, infections, and impaired peripheral circulation, complicating the treatment of pressure injuries (PIs) and the success of reconstructive procedures like grafts and flaps. Regenerative medicine aims to address these issues by identifying effective cellular therapies to restore vascular beds.

View Article and Find Full Text PDF

Heart-derived endogenous stem cells.

Mol Biol Rep

September 2025

Department of Translational Research, College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA, 91766-1854, USA.

Regenerative cardiology has emerged as a novel strategy to improve cardiac healing following ischemic injury. While stem-cell-mediated cardiac regeneration has garnered much attention as a promising strategy, its value remains debated owing to the lack of ideal stem cell source candidates. Resident/endogenous cardiac-derived stromal cells (CSCs) exhibit superior therapeutic potential due to their innate abilities to differentiate into cardiac cells, especially cardiomyocytes (CM).

View Article and Find Full Text PDF

Oligomeric proanthocyanidins (OPCs), condensed tannins found plentiful in grape seeds and berries, have higher bioavailability and therapeutic benefits due to their low degree of polymerization. Recent evidence places OPCs as effective modulators of cancer stem cell (CSC) plasticity and tumor growth. Mechanistically, OPCs orchestrate multi-pathway inhibition by destabilizing Wnt/β-catenin, Notch, PI3K/Akt/mTOR, JAK/STAT3, and Hedgehog pathways, triggering β-catenin degradation, silencing stemness regulators (OCT4, NANOG, SOX2), and stimulating tumor-suppressive microRNAs (miR-200, miR-34a).

View Article and Find Full Text PDF