Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The condensin SMC protein complex organizes chromosomal structure by extruding loops of DNA. Its ATP-dependent motor mechanism remains unclear but likely involves steps associated with large conformational changes within the ∼50 nm protein complex. Here, using high-resolution magnetic tweezers, we resolve single steps in the loop extrusion process by individual yeast condensins. The measured median step sizes range between 20-40 nm at forces of 1.0-0.2 pN, respectively, comparable with the holocomplex size. These large steps show that, strikingly, condensin typically reels in DNA in very sizeable amounts with ∼200 bp on average per single extrusion step at low force, and occasionally even much larger, exceeding 500 bp per step. Using Molecular Dynamics simulations, we demonstrate that this is due to the structural flexibility of the DNA polymer at these low forces. Using ATP-binding-impaired and ATP-hydrolysis-deficient mutants, we find that ATP binding is the primary step-generating stage underlying DNA loop extrusion. We discuss our findings in terms of a scrunching model where a stepwise DNA loop extrusion is generated by an ATP-binding-induced engagement of the hinge and the globular domain of the SMC complex.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8789078PMC
http://dx.doi.org/10.1093/nar/gkab1268DOI Listing

Publication Analysis

Top Keywords

loop extrusion
12
atp binding
8
protein complex
8
dna loop
8
dna
6
condensin extrudes
4
extrudes dna
4
dna loops
4
steps
4
loops steps
4

Similar Publications

We study how protein condensates respond to a site of active RNA transcription (i.e., a gene promoter) due to electrostatic protein-RNA interactions.

View Article and Find Full Text PDF

Wadjet-Keeping a watchful eye on circular DNA.

Structure

September 2025

Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Mohali, SAS Nagar (Mohali), Punjab, India. Electronic address:

The structural maintenance of chromosomes (SMC)-family Wadjet complex restricts plasmid transformation in bacteria through a distinctive mechanism coupling DNA loop extrusion and cleavage. In this issue of Structure, Roisné-Hamelin et al. report the biochemical reconstitution and structure of a type II Wadjet complex, revealing a shared overall mechanism and notable architectural differences compared to related type I complexes.

View Article and Find Full Text PDF

Multidrug and toxin extrusion (MATE) transporters are widely conserved across all domains of life and play diverse roles in plant development. Here, we investigated the role of DETOXIFICATION 51 (DTX51), a MATE transporter in Arabidopsis. Overexpression of DTX51 led to pleiotropic phenotypes resembling those of hls1 hlh1 and amp1 lamp1 loss-of-function mutants, which have disruptions of key developmental regulators that act non-cell-autonomously.

View Article and Find Full Text PDF

Dynamical properties of chromatin provide insights into key folding principles.

Biophys J

August 2025

Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, India; Sunita Sanghi Centre of Aging and Neurodegenerative Diseases, Indian Institute of Technology Bombay, Mumbai, India; Koita Centre for Digital Health, Indian Institute of Technology Bombay, Mumbai, Indi

Even though the three-dimensional static organization of chromatin is highly studied, chromatin is a dynamic structure, and time-dependent changes are crucial for biological function. Although it is known that both intrachromatin interaction and loop extrusion are crucial to understanding chromatin organization, what their respective roles are in deciding the nature of spatial and temporal organization is not clear. Simulating a model with active loop extrusion and intrachromatin interactions, we show that under certain conditions, the measurable dynamic quantities are dominated by the loop extrusion, even though the population-averaged contact map (structure) can be dominated by intrachromatin interactions, with loop extrusion playing no major role.

View Article and Find Full Text PDF

Decoding Mitotic Chromosome Assembly: Three Rules Governing Condensin-Cohesin Engagement.

Research (Wash D C)

August 2025

Department of Gynecologic Oncology, Women's Hospital, School of Medicine and MOE Laboratory of Biosystems Homeostasis & Protection, Life Sciences Institute, Zhejiang University, Hangzhou 310058, China.

Mitotic chromosome formation depends on coordinated SMC complex activities, yet how condensin engages cohesin during this process remains unclear. Samejima et al. combined synchronized mitotic entry, auxin-inducible degrons, high-resolution Hi-C, live-cell imaging, quantitative proteomics, and polymer simulations to dissect condensin I, condensin II, and cohesin interplay in vertebrate cells.

View Article and Find Full Text PDF