98%
921
2 minutes
20
The lamellipodia and pseudopodia of migrating cells are produced and maintained by the Scar/WAVE complex. Thus, actin-based cell migration is largely controlled through regulation of Scar/WAVE. Here, we report that the Abi subunit-but not Scar-is phosphorylated in response to extracellular signalling in cells. Like Scar, Abi is phosphorylated after the complex has been activated, implying that Abi phosphorylation modulates pseudopodia, rather than causing new ones to be made. Consistent with this, Scar complex mutants that cannot bind Rac are also not phosphorylated. Several environmental cues also affect Abi phosphorylation-cell-substrate adhesion promotes it and increased extracellular osmolarity diminishes it. Both unphosphorylatable and phosphomimetic Abi efficiently rescue the chemotaxis of Abi KO cells and pseudopodia formation, confirming that Abi phosphorylation is not required for activation or inactivation of the Scar/WAVE complex. However, pseudopodia and Scar patches in the cells with unphosphorylatable Abi protrude for longer, altering pseudopod dynamics and cell speed. , in which Scar and Abi are both unphosphorylatable, can still form pseudopods, but migrate substantially faster. We conclude that extracellular signals and environmental responses modulate cell migration by tuning the behaviour of the Scar/WAVE complex after it has been activated.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8700165 | PMC |
http://dx.doi.org/10.3390/cells10123485 | DOI Listing |
Sci Adv
May 2025
Sainsbury Laboratory (SLCU), University of Cambridge, 47 Bateman Street, Cambridge CB2 1LR, UK.
Dynamic actin cytoskeleton reorganization enables plant developmental processes requiring polarized transport such as root hair and leaf trichome formation. The SCAR/WAVE complex plays a crucial role in regulating these dynamics through ARP2/3-mediated actin branching. genes occur as small families across a wide range of plant species, but whether and how they fulfill different functions remains unclear.
View Article and Find Full Text PDFbioRxiv
March 2025
King's College London, Krause group, Randall Centre for Cell and Molecular Biophysics, New Hunt's House, Guy's Campus, London, SE1 1UL, UK.
Cell migration is crucial for development and deregulation causes diseases. The Scar/WAVE complex promotes mesenchymal cell migration through Arp2/3 mediated lamellipodia protrusion. We previously discovered that all isoforms of Nance-Horan Syndrome-like 1 (NHSL1) protein interact directly with the Scar/WAVE complex and the NHSL1-F1 isoform negatively regulates Scar/WAVE-Arp2/3 activity thereby inhibiting 2D random cell migration.
View Article and Find Full Text PDFCommun Biol
February 2025
Laboratoire d'Optique et Biosciences (LOB), CNRS, INSERM, Ecole Polytechnique, Institut Polytechnique de Paris, 91120, Palaiseau, France.
Cell migrations are crucial for embryonic development, wound healing, the immune response, as well as for cancer progression. During mesenchymal cell migration, the Rac1-WAVE-Arp2/3 signalling pathway induces branched actin polymerisation, which protrudes the membrane and allows migration. Fine-tuning the activity of the Rac1-WAVE-Arp2/3 pathway modulates protrusion lifetime and migration persistence.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
February 2025
National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China.
Plant cytokinesis requires coordination between the actin cytoskeleton, microtubules, and membranes to guide division plane formation and cell plate expansion; how these regulatory factors are coordinated remains unknown. The actin cytoskeleton assembly is controlled by several actin nucleation factors, such as the SCAR/WAVE complex, which regulates actin nucleation and branching through the activation of the ARP2/3 complex. The activity of these actin regulatory proteins is likely influenced by interactions with specific membranes; however, the molecular basis and the biological relevance of SCAR-membrane interactions are also unclear.
View Article and Find Full Text PDFStress Biol
November 2024
State Key Laboratory of Crop Stress Resistance and High-Efficiency Production and College of Life Sciences, Northwest A&F University, 22 Xinong Rd, Yangling, Shaanxi, 712100, China.
Developmental plasticity is critical for plants to adapt to constantly changing environments. Plant root hairs display dramatic plasticity under different environments and therefore play crucial roles in defense against environmental stressors. Here, we report the isolation of an Arabidopsis mutant, salinity over-sensitive mutant 1-1 (som1-1), also exhibiting root hair developmental defects.
View Article and Find Full Text PDF