Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
Plant cytokinesis requires coordination between the actin cytoskeleton, microtubules, and membranes to guide division plane formation and cell plate expansion; how these regulatory factors are coordinated remains unknown. The actin cytoskeleton assembly is controlled by several actin nucleation factors, such as the SCAR/WAVE complex, which regulates actin nucleation and branching through the activation of the ARP2/3 complex. The activity of these actin regulatory proteins is likely influenced by interactions with specific membranes; however, the molecular basis and the biological relevance of SCAR-membrane interactions are also unclear. In this study, we demonstrate that the ER-PM tethering protein VAP27-1 directly interacts with SCAR2 at the ER membrane and that they colocalize to guide cell plate orientation during cell division. In the root meristem, both VAP27-1 and SCAR2 exhibit polarized localization at the cell plates, where the interaction between ER and PM is abundant. VAP27-1 recruits SCAR2 to the cell division plane, where there is a high concentration of actin filaments. In the mutant, the densities of cortical ER, SCAR2, and consequently actin filaments are significantly reduced at the cell division plane, affecting cell plate orientation, cell division, and root development. A similar phenomenon is also observed in the mutant, suggesting that VAP27 and SCAR proteins regulate cell division through a similar pathway. In conclusion, our data reveal a plant-specific function of VAP27-regulated ER-PM interaction and advance our understanding of plant ER-PM contact site and its role in cell division.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11831168 | PMC |
http://dx.doi.org/10.1073/pnas.2416927122 | DOI Listing |