98%
921
2 minutes
20
The phosphonate functionalized layered double hydroxide constructed through intercalation reaction, and efficiently applied to capture toxicant metal ions. The characterization results indicated that the functionalized composite with many functional groups has adsorption potential to heavy metals. The strong chelation of the phosphonate groups with heavy metal ions proved it an excellent adsorbent leading to a maximum adsorption capacity of 156.95 mg/g (Cr) and 198.34 mg/g (Cd) separately. The data of kinetics and isotherm revealed that the chelating adsorption was dominated by chemisorption and monolayer interaction. Notably, the spent adsorbent presented satisfactory reusability after six cycles. Furthermore, the Forcite simulation with the CLAYFF-CVFF force field implied that the critical mechanism for modifiers and the surface sites of the interlayer is electrostatic interaction. Our in-depth exploration in terms of the weak interactions not only demonstrated the strength and nature but also provided a novel way to intuitively capture the type of interactions that occurred around interesting regions. In the end, we made detailed investigations on the chelation mechanism, and the covalent nature played a leading role in the binding interaction. This work provides a valuable strategy for researchers to design novel materials in practice.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jhazmat.2021.128062 | DOI Listing |
Updates Surg
September 2025
Surgical Department, HPB Unit Pederzoli Hospital, Peschiera del Garda, Verona, Italy.
Minimally invasive pancreaticoduodenectomy is gaining success among surgeons also for the increasing use of robotic approach. Ideal candidates are patients with small, confined tumor and dilatated Wirsung duct which is a quite rare clinical conditions: in fact, most of minimally invasive pancreaticoduodenectomies are performed for periampullary cancer, easy to remove but with soft pancreatic remnant and tiny Wirsung duct. The result is the technical challenge of the pancreatico-enteric reconstructions.
View Article and Find Full Text PDFAdv Colloid Interface Sci
September 2025
Moscow Center for Advanced Studies, 20, Kulakova str., Moscow, 123592, Moscow region, Russia. Electronic address:
Room temperature ionic liquids show great promise as electrolytes in various technological applications, such as energy storage or electrotunable lubrication. These applications are particularly intriguing due to the specific behavior of ionic liquids in nanoconfinement. While previous research has been focused on optimizing the required characteristics through the selection of electrolyte properties, the contribution of confining material properties in these systems has been largely overlooked.
View Article and Find Full Text PDFMol Biol Rep
September 2025
Chitkara College of Pharmacy, Chitkara University, Rajpura, 140401, Punjab, India.
Neuroinflammation, a vital protective response for tissue homeostasis, becomes a detrimental force when chronic and dysregulated, driving neurological disorders like Alzheimer's, Parkinson's, and Huntington's diseases. Potassium (K) channels maintain membrane potential and cellular excitability in neurons and glia within the intricate CNS signaling network. Neuronal injury or inflammation can disrupt K channel activity, leading to hyperexcitability and chronic pain.
View Article and Find Full Text PDFACS Appl Mater Interfaces
September 2025
State Key Laboratory of Electrical Insulation and Power Equipment, Xi'an Jiaotong University, Xi'an 710049, China.
Economically viable and biologically compatible amino acids demonstrate significant potential as electrolyte microstructure modifiers in aqueous zinc-ion batteries (AZIBs). Compared to polar amino acids, nonpolar amino acids simultaneously own zincophilicity and hydrophobicity, showing great potential in the industrial application of AZIBs. However, nonpolar amino acids have been comparatively understudied in existing research investigations.
View Article and Find Full Text PDFInt J Environ Health Res
September 2025
Laboratory of Extremophile Plants, Center of Biotechnology of Borj-Cedria, BP 901, HammamLif, Tunisia.
Corrosion of mild steel in marine environments poses a major challenge for industrial sustainability. This study aims to develop an eco-friendly corrosion protection approach by combining phenolic extracts (PE) from extremophile plants with Zn₂-Al-layered double hydroxides (LDH) to form hybrid inhibitors for S235JR steel in artificial seawater (3.5% NaCl).
View Article and Find Full Text PDF