98%
921
2 minutes
20
Unlike commercial lithium-ion batteries, the high cost and low ionic conductivity of solid electrolytes (SEs) continues to be a big hurdle in commercially available all-solid-state batteries (ASSBs). Rather than the conventional dry-process and high-energy ball milling processes, the productive solution synthesis of bulk-type SEs is the most crucial issue in the successful application of high-energy-density ASSBs. In this study, the way is paved to overcome the hurdle for commercial lithium phosphorus sulfide chloride (LPSCl) SEs via a readily processable bulk-type solution-based synthesis without acquiring any high-energy ball-milling processes. By incorporating an elemental sulfur additive during the preparation process, Li S and S form a polysulfide, and P S is induced to react readily to provide LPSCl with excellent ion conductivity as high as 1.8 mS cm . Surprisingly, the purity of bulk type precursors does not affect the final composition and ionic conductivity of sulfide electrolytes, which show the same electrochemical characteristics of ASSB cells with a high discharge capacity of 185.6 mA h g . The study offers a promising strategy for saving the production cost of sulfide SEs, possibly up to 92%, and their commercial ASSBs are expected to be achieving a competitive cost per energy density of ≈0.46 $ W .
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/smtd.202100793 | DOI Listing |
J Cell Mol Med
September 2025
Department of Pharmacy, Faculty of Health and Life Sciences, Daffodil International University, Dhaka, Bangladesh.
Ferroptosis, a controlled cell death influenced by iron-dependent lipid peroxidation, presents potential therapeutic targets for cancer treatment due to its unique molecular pathways and potential drug resistance. Natural compounds, such as polyphenols, flavonoids, terpenoids and alkaloids, can influence ferroptosis via important signalling pathways, such as Nrf2/Keap1, p53, and GPX4. These are promising for combinational therapy due to their ability to cause ferroptotic death in cancer cells, exhibit tumour-specific selectivity and reduce systemic toxicity.
View Article and Find Full Text PDFExpert Opin Drug Deliv
September 2025
Department of Pharmacology, School of Pharmaceutical Education & Research, Jamia Hamdard, New Delhi, India.
Introduction: The potential of nanomedicine in alleviating different disorders is immense, but its clinical translation rate is severely debilitated, despite promising preclinical study outcomes. For therapeutically successful targeted delivery of nanomedicines, it is crucial to understand why well-designed nanomedicines often fail during clinical trials.
Areas Covered: This review comprehensively explores the multifactorial reasons behind the poor clinical success rate of nanomedicines, including pathophysiological complexity, limitations in statistical analysis, inadequate animal models, variability in the EPR effect, and manufacturing challenges.
PLoS Comput Biol
September 2025
Institute for Translational Medicine and Therapeutics, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America.
Simulation of realistic omics data is a key input for benchmarking studies that help users obtain optimal computational pipelines. Omics data involves large numbers of measured features on each sample and these measures are generally correlated with each other. However, simulation too often ignores these correlations, perhaps due to computational and statistical hurdles of doing so.
View Article and Find Full Text PDFFront Plant Sci
August 2025
College of Software, Shanxi Agricultural University, Taigu, China.
The challenge of efficiently detecting ripe and unripe strawberries in complex environments like greenhouses, marked by dense clusters of strawberries, frequent occlusions, overlaps, and fluctuating lighting conditions, presents significant hurdles for existing detection methodologies. These methods often suffer from low efficiency, high computational expenses, and subpar accuracy in scenarios involving small and densely packed targets. To overcome these limitations, this paper introduces YOLOv11-GSF, a real-time strawberry ripeness detection algorithm based on YOLOv11, which incorporates several innovative features: a Ghost Convolution (GhostConv) convolution method for generating rich feature maps through lightweight linear transformations, thereby reducing computational overhead and enhancing resource utilization; a C3K2-SG module that combines self-moving point convolution (SMPConv) and convolutional gated linear units (CGLU) to better capture the local features of strawberry ripeness; and a F-PIoUv2 loss function inspired by Focaler IoU and PIoUv2, utilizing adaptive penalty factors and interval mapping to expedite model convergence and optimize ripeness classification.
View Article and Find Full Text PDFJ Phys Condens Matter
September 2025
The Hong Kong Polytechnic University, Hong Kong, Hong Kong, 999077, HONG KONG.
In this review paper, we begin by introducing the fundamental concepts of superconductivity, laying the groundwork for understanding its principles and applications. We then delve into the scientific advantages of one-dimensional (1D) superconductors over three-dimensional (3D) superconductors, highlighting the main significant enhancement in the upper critical field, which can increase by two orders of magnitude. This feature is crucial for advancing the technological performance of superconducting high-field magnets.
View Article and Find Full Text PDF