E484K and N501Y SARS-CoV 2 spike mutants Increase ACE2 recognition but reduce affinity for neutralizing antibody.

Int Immunopharmacol

Amity Institute of Biotechnology, Amity University, Kolkata 700135, India. Electronic address:

Published: January 2022


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

SARS-CoV2 mutants B.1.1.7, B.1.351, and P.1 contain a key mutation N501Y. B.1.135 and P.1 lineages have another mutation, E484K. Here, we decode the effect of these two mutations on the host receptor, ACE2, and neutralizing antibody (B38) recognition. The N501Y RBD mutant binds to ACE2 with higher affinity due to improved π-π stacking and π-cation interactions. The higher binding affinity of the E484K mutant is caused due to the formation of additional hydrogen bond and salt-bridge interactions with ACE2. Both the mutants bind to the B38 antibody with reduced affinity due to the loss of several hydrogen-bonding interactions. The insights obtained from the study are crucial to interpret the increased transmissibility and reduced neutralization efficacy of rapidly emerging SARS-CoV2 VOCs.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8641390PMC
http://dx.doi.org/10.1016/j.intimp.2021.108424DOI Listing

Publication Analysis

Top Keywords

neutralizing antibody
8
e484k n501y
4
n501y sars-cov
4
sars-cov spike
4
spike mutants
4
mutants increase
4
ace2
4
increase ace2
4
ace2 recognition
4
recognition reduce
4

Similar Publications

Introduction: The Zika virus (ZIKV) envelope (E) protein is critical for viral replication and host interactions. Although glycosylation of the E protein is known to influence viral infectivity and immune evasion, the specific functional roles of E protein glycosylation in ZIKV infectivity in mosquito cells remain unclear.

Methods: In this study, we generated a deglycosylation mutant ZIKV with a T156I substitution in the E protein and investigated its effects on viral replication and viral-host interactions in mosquito C6/36 cells.

View Article and Find Full Text PDF

Foot-and-mouth disease virus (FMDV), a critical pathogen in the global livestock industry, has long been a focal point of international disease control strategies. This study developed a nanoparticle-based FMDV vaccine platform. We fused the FMDV immunodominant epitope (VP1-G-H-loop) and T-cell epitope (T) with the nanoparticle scaffold (LS), efficiently producing the T-LS-LOOP nanoparticle vaccine using the prokaryotic expression system (BL21).

View Article and Find Full Text PDF

Dengue virus infection reprograms baseline innate immune gene expression.

Med

September 2025

Viral Research and Experimental Medicine Centre, SingHealth Duke-NUS Academic Medical Centre, Singapore 169856, Singapore; Program in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore 169857, Singapore; Department of Clinical Translational Research, Singapore General Hospital, Singapo

Background: All three dengue vaccines that have completed phase 3 clinical trials have shown greater efficacy in dengue-seropositive compared to dengue-seronegative individuals. This includes the live-attenuated tetravalent dengue vaccine TAK-003, where immunogenicity in baseline seronegative individuals remains lower after two doses, despite seroconversion after the first dose, compared to baseline seropositive individuals after one dose.

Methods: A whole-genome microarray was used to analyze the host response to TAK-003.

View Article and Find Full Text PDF

New SARS-CoV-2 variants continue to emerge and may cause new waves of COVID-19. Antibody evasion is a major driver of variant emergence but variants can also exhibit altered capacity to enter lung cells and to use ACE2 species orthologues for cell entry. Here, we assessed cell line tropism, usage of ACE2 orthologues and antibody evasion of variant MC.

View Article and Find Full Text PDF

Colloidal gold technology in viral diagnostics: Recent innovations, clinical applications, and future perspectives.

Virology

September 2025

Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi, Xinjiang, China. Electronic address:

Colloidal gold technology has revolutionized viral diagnostics through its rapid, cost-effective, and user-friendly applications, particularly in point-of-care testing (POCT). This review synthesizes recent advancements, focusing on its role in detecting respiratory viruses, hepatitis viruses, and emerging pathogens. The technology leverages the unique optical and physicochemical properties of gold nanoparticles (AuNPs), including localized surface plasmon resonance (LSPR) and high surface-to-volume ratios, to achieve rapid antigen-antibody recognition with visual readouts within 15 min.

View Article and Find Full Text PDF