Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Knee osteoarthritis (OA) is one of the most common musculoskeletal disorders. OA diagnosis is currently conducted by assessing symptoms and evaluating plain radiographs, but this process suffers from the subjectivity of doctors. In this study, we retrospectively compared five commonly used machine learning methods, especially the CNN network, to predict the real-world X-ray imaging data of knee joints from two different hospitals using Kellgren-Lawrence (K-L) grade of knee OA to help doctors choose proper auxiliary tools. Furthermore, we present attention maps of CNN to highlight the radiological features affecting the network decision. Such information makes the decision process transparent for practitioners, which builds better trust towards such automatic methods and, moreover, reduces the workload of clinicians, especially for remote areas without enough medical staff.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8664510PMC
http://dx.doi.org/10.1155/2021/1765404DOI Listing

Publication Analysis

Top Keywords

machine learning
8
learning methods
8
knee osteoarthritis
8
multicentre study
4
study machine
4
methods clinical
4
clinical diagnosis
4
knee
4
diagnosis knee
4
osteoarthritis knee
4

Similar Publications

Traditional drug discovery methods like high-throughput screening and molecular docking are slow and costly. This study introduces a machine learning framework to predict bioactivity (pIC₅₀) and identify key molecular properties and structural features for targeting Trypanothione reductase (TR), Protein kinase C theta (PKC-θ), and Cannabinoid receptor 1 (CB1) using data from the ChEMBL database. Molecular fingerprints, generated via PaDEL-Descriptor and RDKit, encoded structural features as binary vectors.

View Article and Find Full Text PDF

Oral bioavailability property prediction based on task similarity transfer learning.

Mol Divers

September 2025

Laboratory of Molecular Design and Drug Discovery, School of Science, China Pharmaceutical University, Nanjing, 211198, China.

Drug absorption significantly influences pharmacokinetics. Accurately predicting human oral bioavailability (HOB) is essential for optimizing drug candidates and improving clinical success rates. The traditional method based on experiment is a common way to obtain HOB, but the experimental method is time-consuming and costly.

View Article and Find Full Text PDF

This study explores how differences in colors presented separately to each eye (binocular color differences) can be identified through EEG signals, a method of recording electrical activity from the brain. Four distinct levels of green-red color differences, defined in the CIELAB color space with constant luminance and chroma, are investigated in this study. Analysis of Event-Related Potentials (ERPs) revealed a significant decrease in the amplitude of the P300 component as binocular color differences increased, suggesting a measurable brain response to these differences.

View Article and Find Full Text PDF

Background And Objectives: Older adults living with dementia are a heterogeneous group, which can make studying optimal medication management challenging. Unsupervised machine learning is a group of computing methods that rely on unlabeled data-that is, where the algorithm itself is discovering patterns without the need for researchers to label the data with a known outcome. These methods may help us to better understand complex prescribing patterns in this population.

View Article and Find Full Text PDF