Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The evaluation and manipulation of structural and functional networks, which has been integral to advancing functional neurosurgery, is beginning to transcend classical subspecialty boundaries. Notably, its application in neuro-oncologic surgery has stimulated an exciting paradigm shift from the traditional localizationist approach, which is lacking in nuance and optimization. This manuscript reviews the existing literature and explores how structural and functional connectivity analyses have been leveraged to revolutionize and individualize pre-operative tumor evaluation and surgical planning. We describe how this novel approach may improve cognitive and neurologic preservation after surgery and attenuate tumor spread. Furthermore, we demonstrate how connectivity analysis combined with neuromodulation techniques can be employed to induce post-operative neuroplasticity and personalize neurorehabilitation. While the landscape of functional neuro-oncology is still evolving and requires further study to encourage more widespread adoption, this functional approach can transform the practice of neuro-oncologic surgery and improve the care and outcomes of patients with intra-axial tumors.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8656669PMC
http://dx.doi.org/10.3390/cancers13236127DOI Listing

Publication Analysis

Top Keywords

functional neurosurgery
8
structural functional
8
neuro-oncologic surgery
8
functional
6
network-based approach
4
approach glioma
4
surgery
4
glioma surgery
4
surgery insights
4
insights functional
4

Similar Publications

The role of intravenous thrombolysis (IVT) in patients with tandem lesions (TL) undergoing endovascular thrombectomy (EVT) for acute ischemic stroke (AIS) remains a subject of ongoing debate. The substantial clot burden and the potential need for periprocedural antiplatelet therapy during emergent carotid stenting (CAS) add to the complexity of treatment decisions. This study aims to systematically review and meta-analyze the literature to evaluate the comparative safety and efficacy of IVT plus EVT versus EVT alone in AIS patients with TL.

View Article and Find Full Text PDF

An early diagnosis of Parkinson's disease (PD) represents a challenge and novel accurate biomarkers are therefore urgently needed. Detection of phosphorylated α-synuclein (p-α-syn) in skin nerve fibers has shown promise as such a marker. However, its accuracy for the identification of PD among patients with early signs of parkinsonism has not been thoroughly explored.

View Article and Find Full Text PDF

Fully Endoscopic Microvascular Decompression for Hemifacial Spasm Using 2-Dimensional/3-Dimensional Endoscopy: Clinical Analysis of 204 Cases.

Oper Neurosurg

September 2025

Department of Neurosurgery and the Training Base of Neuroendoscopic Physicians under the Chinese Medical Doctor Association, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Affiliated Hospital of Nantong University, Nantong, Jiangsu Province, China.

Background And Objectives: Microvascular decompression (MVD) for hemifacial spasm (HFS) is commonly conducted under a microscope. We report a large series of fully endoscopic MVDs for HFS and describe our initial experience with 3-dimensional (3D) endoscopy.

Methods: Clinical data of 204 patients with HFS who underwent fully endoscopic MVD using 2-dimensional (2D) and 3D endoscopy (191 and 13 patients, respectively) from July 2017 to October 2024 were retrospectively analyzed.

View Article and Find Full Text PDF

Preventing Glioblastoma Relapse by Igniting Innate Immunity through Mitochondrial Stress in the Surgical Cavity.

Adv Mater

September 2025

Department of Neurosurgery, Qilu Hospital and Shandong Key Laboratory of Brain Health and Function Remodeling, Institute of Brain and Brain-Inspired Science, Jinan Microecological Biomedicine Shandong Laboratory, Cheeloo College of Medicine, Shandong University, 107 Wenhua Xi Road, Jinan, Shandong,

Innate immunity is crucial in orchestrating the brain immune response, however, glioblastoma multiforme (GBM) has evolved sophisticated mechanisms to evade innate immune surveillance, posing significant challenges for current immunotherapies. Here, a therapeutic strategy is reported that aims at reactivating innate immune responses in GBM via targeted induction of mitochondrial stress, thereby enhancing tumor immunogenicity. Specifically, innate immune-stimulating nanoparticles (INSTNA) are developed, encapsulating positively charged iridium-based complexes (Ir-mito) and small interfering RNA against Methylation-Controlled J protein (si-MCJ) to attenuate mitochondrial respiration.

View Article and Find Full Text PDF

Conductive nanocomposite hydrogels (CNHs) represent a promising tool in neural tissue engineering, offering tailored electroactive microenvironments to address the complex challenges of neural repair. This systematic scoping review, conducted in accordance with PRISMA-ScR guidelines, synthesizes recent advancements in CNH design, functionality, and therapeutic efficacy for central and peripheral nervous system (CNS and PNS) applications. The analysis of 125 studies reveals a growing emphasis on multifunctional materials, with carbon-based nanomaterials (CNTs, graphene derivatives; 36.

View Article and Find Full Text PDF