98%
921
2 minutes
20
The biological process to remove nitrogen in winter effluent is often seriously compromised due to the effect of low temperatures (< 13 °C) on the metabolic activity of microorganisms. In this study, a novel heterotrophic nitrifying-aerobic denitrifying bacterium with cold tolerance was isolated by iterative domestication and named Moraxella sp. LT-01. The LT-01 maintained almost 60% of its maximal growth activity at 10 °C. Under initial concentrations of 100 mg/L, the removal efficiencies of ammonium, nitrate, nitrite by LT-01 were 70.3%, 65.4%, 61.7% respectively for 72 h incubation at 10 °C. Nitrogen balance analysis showed that about 46% of TN was released as gases and 16% of TN was assimilated for cell growth. The biomarker genes involved in nitrification and denitrification pathways were identified by gene-specific PCR and revealed that the LT-01 has nitrite reductase (NirS) but not hydroxylamine reductase (HAO), which implies the involvement of other genes in the process. The study indicates that LT-01 has the potential for use in low-temperature regions for efficient sewage treatment.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00449-021-02668-7 | DOI Listing |
Front Microbiol
August 2025
State Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, China.
While soil microorganisms underpin terrestrial ecosystem functioning, how their functional potential adapts across environmental gradients remains poorly understood, particularly for ubiquitous taxa. Employing a comprehensive metagenomic approach across China's six major terrestrial ecosystems (41 topsoil samples, 0-20 cm depth), we reveal a counterintuitive pattern: oligotrophic environments (deserts, karst) harbor microbiomes with significantly greater metabolic pathway diversity (KEGG) compared to resource-rich ecosystems. We provide a systematic catalog of key functional genes governing biogeochemical cycles in these soils, identifying: 6 core CAZyme genes essential for soil organic carbon (SOC) decomposition and biosynthesis; 62 nitrogen (N)-cycling genes (KOs) across seven critical enzymatic clusters; 15 sulfur (S)-cycling genes (KOs) within three key enzymatic clusters.
View Article and Find Full Text PDFPhys Chem Chem Phys
September 2025
School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China.
To analyse the issues of high muzzle flame intensity and the easy migration of insensitive agents in conventional insensitive propellants, this study synthesizes modified nitrocellulose grafted with carboxymethyl potassium groups by a two-step process, starting from the molecular structure of nitrocellulose (NC), the principal component of propellants. First, the denitration reaction was performed to reduce part of the nitrate ester groups on the surface of NC to hydroxyl groups, followed by an etherification reaction to achieve directional grafting of carboxymethyl potassium groups. Compared with conventional flame retardant/insensitive systems based on nitrogen, phosphorus, or DBP (dibutyl phthalate), potassium-based functional groups exhibit superior thermal stability and environmental friendliness.
View Article and Find Full Text PDFNew Phytol
September 2025
State Key Laboratory of Nutrient Use and Management, College of Resources and Environmental Sciences, National Academy of Agriculture Green Development, China Agricultural University, Beijing, 100193, China.
Microbial nitrate ammonification is a crucial process to retain nitrogen (N) in soils, thereby reducing N loss. Nitrate ammonification has been studied in enrichment and axenic bacterial cultures but so far has been merely ignored in environmental studies. In particular, the capability of arbuscular mycorrhizal fungi (AMF) to regulate nitrate ammonification has not yet been explored.
View Article and Find Full Text PDFWater Environ Res
September 2025
Suzhou Institute of Trade & Commerce, Suzhou, China.
This study investigated the efficacy of two microalgae treatment systems (Chlorella vulgaris monoculture and a Chlorella vulgaris-S395-2-Clonostachys rosea symbiotic system) in treating aquaculture wastewater, under varying concentrations of synthetic strigolactone analog (GR24). By exposing the systems to four GR24 doses (0, 10, 10, and 10 M), we examined the impact on biomass growth, photosynthesis, and wastewater treatment. Elevated GR24 concentrations bolstered metabolism and photosynthesis in the systems, fostering rapid symbiont growth and enhanced treatment efficiency.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
September 2025
Department of Chemistry, Dartmouth College, Hanover, NH, 03755, USA.
The fine-tuning of the (photo)physical properties of molecular photoswitches remains an active area of research, and recently, the incorporation of heterocycles into photoswitch scaffolds has emerged as an effective strategy in this vein. To assess the influence that heterocyclic rings have on hydrazone-based systems, we synthesized a series of photoswitches and examined the impact that heterocycles have on the switching efficiency. TD-DFT calculations and structure-property analyses revealed that heterocycles with basic nitrogen and secondary hydrogen-bonding sites (e.
View Article and Find Full Text PDF