98%
921
2 minutes
20
Increasing evidence points to the Survival Motor Neuron (SMN) protein as a key determinant of translation pathway. Besides its role in RNA processing and sorting, several works support a critical implication of SMN in ribosome biogenesis. We previously showed that SMN binds ribosomal proteins (RPs) as well as their encoding transcripts, ensuring an appropriate level of locally synthesized RPs. SMN impacts the translation machinery in both neural and non-neural cells, in agreement with the concept that SMN is an essential protein in all cell types. Here, we further assessed the relationship between SMN and translation-related factors in immortalized human fibroblasts. We focused on SMN-nucleolin interaction, keeping in mind that nucleolin is an RNA-binding protein, highly abundant within the nucleolus, that exhibits a central role in ribosomes production. Nucleolin may also affects translation network by binding the mammalian target of rapamycin (mTOR) mRNA and promoting its local synthesis. In this regard, for the first time we provided evidence that SMN protein itself associates with mTOR transcript. Collectively, we found that: (1) SMN coexists with nucleolin-mTOR mRNA complexes at subcellular level; (2) SMN deficiency impairs nucleolar compartmentalization of nucleolin, and (3) this event correlates with the nuclear retention of mTOR mRNA. These findings suggest that SMN may regulate not only structural components of translation machinery, but also their upstream regulating factors.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8616268 | PMC |
http://dx.doi.org/10.3390/cells10113015 | DOI Listing |
Fish Shellfish Immunol
September 2025
College of Marine Sciences, State Key Laboratory of Mariculture Breeding, Key Laboratory of Marine Biotechnology of Fujian Province, College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, China; Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and
The closely related cytokines Interleukin-4 (IL-4) and IL-13 regulate the Th2 immune response by interacting with their specific receptor complexes. MicroRNAs (miRNAs) modulate various biological pathways through mechanisms that either repress mRNA translation or promote messenger RNA degradation. The miRNA miR-126b is implicated in fish embryonic development.
View Article and Find Full Text PDFAppl Biochem Biotechnol
September 2025
Operating Room, Shanghai Tianyou Hospital, No.528, Zhennan Road, Putuo District, Shanghai, 200331, China.
Gastric cancer (GC) is a malignant tumor originating from the epithelial cells of the gastric mucosa. The 5-methylcytosine (mC) modification refers to the addition of a methyl group to the fifth carbon atom of cytosine in RNA molecules. This study aimed to investigate the role of NOL1/NOP2/SUN domain (NSUN)6 in GC and its underlying molecular mechanisms.
View Article and Find Full Text PDFNAR Cancer
September 2025
Institute of Pathology, University of Würzburg, 97080 Würzburg, Germany.
Germline mutations in the DNA repair helicase XPD can cause the diseases xeroderma pigmentosum (XP) and trichothiodystrophy (TTD). XP patients bear an increased risk of skin cancer including melanoma. This is not observed for TTD patients despite DNA repair defects.
View Article and Find Full Text PDFJ Chin Med Assoc
September 2025
Department of Thoracic Surgery, Guangxi Academy of Medical Sciences and The People's Hospital of Guangxi Zhuang Autonomous Region, Guangxi, China.
Background: Phenylalanyl-TRNA Synthetase Subunit Beta (FARSB) is implicated in the progression of multiple cancers and represents a potential therapeutic target. However, its role in lung adenocarcinoma (LUAD) progression and the immune microenvironment remains poorly understood, warranting further investigation into its regulatory mechanisms.
Methods: We conducted bioinformatics analyses to investigate the expression levels of FARSB in LUAD, identify enriched pathways, and assess its correlation with patient prognosis and CD8+ T cell infiltration.
bioRxiv
August 2025
Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School Boston, MA, USA.
N6-methyladenosine (m6A) is the most prevalent internal mRNA modification, enriched in the CNS yet poorly characterized in glioma. Using long-read RNA sequencing, we mapped m6A in an glioma model following knockdown (KD) of the reader IGF2BP2, writer METTL3, and eraser ALKBH5, with naive glioma cells and astrocytes as controls. Glioma cells exhibited a two-fold reduction in global m6A, suggesting progressive loss from healthy to malignant states.
View Article and Find Full Text PDF