Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Study Design: A controlled laboratory study.

Objective: The aim of this study was to examine bone damage caused by irradiation to spinal vertebrae in rats.

Summary Of Background Data: Radiotherapy is widely used in the treatment of malignant spine tumors. However, a few studies have reported vertebral fractures following radiotherapy as an adverse reaction. There are no reports on irradiation- induced changes in bone fragility, mechanical and structural changes focusing on the spine, and the mechanism of irradiation-induced bone osteoporosis.

Methods: Eighty-four female Wistar rats were randomly allocated to the 20 Gy irradiated or the nonirradiated (control) group. The lumbar vertebrae were irradiated with an external focal radiation dose of 20 Gy. Biomechanical, structural, and histological analyses were performed at 0, 2, 4, 6, 8, 12, and 24 weeks after irradiation. Structural analysis and bone density measurement of vertebral trabecular bone were performed by μCT. Histopathological evaluation was performed by hematoxylin and eosin staining and immunostaining.

Results: The bone strength at 2 weeks after irradiation (311 ± 23 N) was 22% lower than that before irradiation (398 ± 34 N) (P  < 0.05). The trabecular spacing increased, and trabecular connectivity and width decreased significantly in the irradiated group compared with those in the non-irradiated group. The three-dimensional structure model became coarse, and the trabecular structure continued to thin and disrupt after irradiation. There was no significant change in the bone mineral density in both groups.

Conclusion: A decrease in bone strength was observed 2 weeks after irradiation. Bone mineral density remained unaltered, whereas the microstructure of trabecular bone changed, suggesting bone damage by irradiation.Level of Evidence: N/A.

Download full-text PDF

Source
http://dx.doi.org/10.1097/BRS.0000000000004282DOI Listing

Publication Analysis

Top Keywords

bone strength
8
spinal vertebrae
8
bone
7
effects radiation
4
radiation bone
4
strength spinal
4
vertebrae rats
4
rats study
4
study design
4
design controlled
4

Similar Publications

Pecking block use at individual level is associated with improved eggshell quality and keel fractures in laying hens.

Poult Sci

August 2025

Department of Animal Biosciences, Ontario Agricultural College, University of Guelph, Guelph, Ontario, N1G2W1 Canada; Campbell Centre for the Study of Animal Welfare, University of Guelph, Guelph, Ontario N1G2W1 Canada. Electronic address:

Laying hens possess a calcium-specific appetite that intensifies towards lights out to meet the high demands for eggshell formation and skeletal maintenance. Pecking blocks (PBs) are edible enrichments that can serve as an additional calcium source. We explored the relationships between PB preference (PBp), PB use, keel fracture status (KS), and eggshell quality.

View Article and Find Full Text PDF

Bioactive hydroxyapatite-sodium silicate waterglass reinforced with nanocollagen from Chitala ornata fish skin for bone engineering.

Int J Biol Macromol

September 2025

The Materials Engineering Department, Faculty of Engineering, Kasetsart University, Phaholyothin Rd., Bangkok 10900, Thailand. Electronic address:

A prototype bioactive calcium phosphate model-specifically hydroxyapatite (HA) derived from eggshells-was developed using a sodium silicate (NaSiO) solution as an inorganic binder, precursor, and reinforcing agent, in combination with collagen nanofibers for bone engineering applications. The sodium silicate solution, functioning as a waterglass adhesive, introduced cohesive forces within the hydroxyapatite matrix, thereby enhancing its physical, chemical, and mechanical properties. Eggshell-derived bioactive hydroxyapatite offers several advantages, including non-toxicity, biocompatibility, collagen adhesion, and the ability to mimic bone structure, making it suitable for tissue engineering.

View Article and Find Full Text PDF

Due to the poor regeneration ability of cartilage tissue, the design and fabrication of permanent hydrogel cartilage scaffolds with mechanical properties matching is still an urgent challenge. In this study, we propose an "inner swelling-outer restraint" strategy to construct Janus hydrogel for pressure-bearing cartilage replacement, which is inspired by the "Lamina-splendens" structure of cartilage. As a proof of concept, the poly(vinyl alcohol)/carboxymethyl cellulose sodium (PVA/CMCNa) layer is designed to capture more fluid by introducing negatively charged aggregates, while the macromolecular conformation of the PVA/MoS layer can be densified through wet annealing, thereby increasing the liquid permeation resistance of the PVA/CMCNa layer.

View Article and Find Full Text PDF

The microstructure of metastatic bone lesions suggests tumor mediated alterations in bone mineralization.

Bone

September 2025

Department of Mechanical Engineering, Texas A&M University, 3123 TAMU, College Station, TX, 77843, United States of America; School of Engineering Medicine, Texas A&M University, 1020 Holcombe Blvd, Houston, TX 77030, United States of America. Electronic address:

Breast, prostate and lung cancer cells frequently metastasize to bone, leading to disruption of the bone microstructure. This study utilized mechanical testing with micro-CT imaging, digital volume correlation (DVC), and atomic force microscopy (AFM) nanomechanical testing to examine the mechanical property variations in mouse long bones (tibia) with metastatic lung cancer cell involvement, spanning from the whole-bone scale to the microstructural level. In addition, we also investigated how metastatic invasion alters the morphology of hydroxyapatite nanocrystals in bone at the nanometer scale.

View Article and Find Full Text PDF

α-Cyclodextrin mediated 3D printed ceramic/polymer composite scaffolds for immunomodulation and osteogenesis in bone defect repair.

Biomater Adv

September 2025

Quanzhou Institute of Equipment Manufacturing, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, China; Fujian Science and Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, Fujian, 350108, China; University o

Bone tissue engineering scaffolds for bone defect treatment face numerous challenges, including mechanical mismatches and the lack of immune microenvironment modulation, often leading to implant failure. In this study, an innovative drug-loaded bioinspired ceramic/polymer composite scaffold was designed and fabricated using extrusion-based 3D printing technology, incorporating α-cyclodextrin (αCD) in a novel approach to improve interfacial compatibility and drug-loading efficiency. Hydroxyapatite (HA), the main component of natural bone, was employed as the inorganic phase to mimic the mineral structure of bone tissue.

View Article and Find Full Text PDF