Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Retention time (RT) prediction contributes to identification of small molecules measured by high-performance liquid chromatography coupled with high-resolution mass spectrometry. Deep learning algorithms based on big data can enhance the accuracy of RT prediction. But at different chromatographic conditions, RTs of compounds are different, and the number of compounds with known RTs is small in most cases. Therefore, the transfer of big data is necessary. In this work, a strategy using a deep neural network (DNN) pretrained by weighed autoencoders and transfer learning (DNNpwa-TL) was proposed to efficiently predict RTs of compounds. The loss function in the autoencoders was calculated with features weighted by mutual information. Then, a DNN pretrained by weighted autoencoders (DNNpwa) was produced. For other specific chromatographic methods, the transfer learning model DNNpwa-TLs were built through fine-tuning the DNNpwa with the help of some compounds with known RTs to conduct the RT prediction. With the above strategy, a DNNpwa was first built with the METLIN small molecule retention time data set containing 80 038 small molecule compounds. A median relative error of 3.1% and a mean relative error of 4.9% were achieved. Then, 17 data sets from different chromatographic methods were studied, and the results showed that the performance of DNNpwa-TL was better than those of other deep learning models. Besides, DNNpwa-TL outperformed random forest, gradient boost, least absolute shrinkage and selection operator regression, and DNN for most of the 17 data sets. Therefore, DNNpwa-TL can provide an efficient method to perform RT prediction of small molecule compounds for different chromatographic methods and conditions.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.analchem.1c03250DOI Listing

Publication Analysis

Top Keywords

transfer learning
12
retention time
12
chromatographic methods
12
small molecule
12
deep neural
8
neural network
8
pretrained weighted
8
weighted autoencoders
8
autoencoders transfer
8
time prediction
8

Similar Publications

Aim: The purpose of this study was to assess the accuracy of a customized deep learning model based on CNN and U-Net for detecting and segmenting the second mesiobuccal canal (MB2) of maxillary first molar teeth on cone beam computed tomography (CBCT) scans.

Methodology: CBCT scans of 37 patients were imported into 3D slicer software to crop and segment the canals of the mesiobuccal (MB) root of the maxillary first molar. The annotated data were divided into two groups: 80% for training and validation and 20% for testing.

View Article and Find Full Text PDF

Obsessive-compulsive disorder (OCD) is a chronic and disabling condition affecting approximately 3.5% of the global population, with diagnosis on average delayed by 7.1 years or often confounded with other psychiatric disorders.

View Article and Find Full Text PDF

Early prediction of orthodontic gingival enlargement using S100A4: a biomarker-based risk stratification model.

Odontology

September 2025

Department of Periodontics, Saveetha Dental College and Hospital, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, Tamil Nadu, India.

Orthodontic-induced gingival enlargement (OIGE) affects approximately 15-30% of patients undergoing orthodontic treatment and remains largely unpredictable, often relying on subjective clinical assessments made after irreversible tissue changes have occurred. S100A4 is a well-characterized marker of activated fibroblasts involved in pathological tissue remodeling. This was a cross-sectional precision biomarker study that analyzed gingival tissue samples from three groups: healthy controls (n = 60), orthodontic patients without gingival enlargement (n = 31), and patients with clinically diagnosed OIGE (n = 61).

View Article and Find Full Text PDF

Purpose: The study aims to compare the treatment recommendations generated by four leading large language models (LLMs) with those from 21 sarcoma centers' multidisciplinary tumor boards (MTBs) of the sarcoma ring trial in managing complex soft tissue sarcoma (STS) cases.

Methods: We simulated STS-MTBs using four LLMs-Llama 3.2-vison: 90b, Claude 3.

View Article and Find Full Text PDF