98%
921
2 minutes
20
Giardiasis is one of the most common gastrointestinal infections worldwide, mainly in developing countries. The etiological agent is the parasite. Giardiasis mainly affects children and immunocompromised people, causing symptoms such as diarrhea, dehydration, abdominal cramps, nausea, and malnutrition. In order to develop an effective vaccine against giardiasis, it is necessary to understand the host- interactions, the immunological mechanisms involved in protection against infection, and to characterize the parasite antigens that activate the host immune system. In this study, we identify and characterize potential T-cell and B-cell epitopes of immunogenic proteins by immunoinformatic approaches, and we discuss the potential role of those epitopes to stimulate the host´s immune system. We selected the main immunogenic and protective proteins of experimentally investigated. We predicted T-cell and B-cell epitopes using immunoinformatic tools (NetMHCII and BCPREDS). Variable surface proteins (VSPs), structural (giardins), metabolic, and cyst wall proteins were identified as the more relevant immunogens of . We described the protein sequences with the highest affinity to bind MHC class II molecules from mouse (I-A and I-A) and human (DRB1*03:01 and DRB1*13:01) alleles, as well as we selected promiscuous epitopes, which bind to the most common range of MHC class II molecules in human population. In addition, we identified the presence of conserved epitopes within the main protein families (giardins, VSP, CWP) of . To our knowledge, this is the first study that analyze immunogenic proteins of by combining bioinformatics strategies to identify potential T-cell and B-cell epitopes, which can be potential candidates in the development of peptide-based vaccines. The bioinformatics analysis demonstrated in this study provides a deeper understanding of the immunogens that bind to critical molecules of the host immune system, such as MHC class II and antibodies, as well as strategies to rational design of peptide-based vaccine against giardiasis.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8579046 | PMC |
http://dx.doi.org/10.3389/fcimb.2021.769446 | DOI Listing |
Curr Med Sci
September 2025
Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
Objective: To develop a novel prognostic scoring system for severe cytokine release syndrome (CRS) in patients with B-cell acute lymphoblastic leukemia (B-ALL) treated with anti-CD19 chimeric antigen receptor (CAR)-T-cell therapy, aiming to optimize risk mitigation strategies and improve clinical management.
Methods: This single-center retrospective cohort study included 125 B-ALL patients who received anti-CD19 CAR-T-cell therapy from January 2017 to October 2023. These cases were selected from a cohort of over 500 treated patients on the basis of the availability of comprehensive baseline data, documented CRS grading, and at least 3 months of follow-up.
Ann Hematol
September 2025
Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
Approximately 30-40% of diffuse large B-cell lymphoma (DLBCL) patients will develop relapse/refractory disease, who may benefit from novel therapies, such as CAR-T cell therapy. Thus, accurate identification of individuals at high risk of early chemoimmunotherapy failure (ECF) is crucial. Methods.
View Article and Find Full Text PDFCytotherapy
July 2025
IRCCS Azienda Ospedaliero-Universitaria di Bologna, Istituto di Ematologia "Seràgnoli", Bologna, Italy; Dipartimento di Scienze Mediche e Chirurgiche, Università di Bologna, Bologna, Italy. Electronic address:
Chimeric antigen receptor (CAR) T-cell therapy has revolutionized the treatment of aggressive B-cell non-Hodgkin lymphoma, particularly in relapsed/refractory large B-cell lymphoma and mantle cell lymphoma. Despite its transformative potential, significant challenges persist in optimizing patient identification and referral pathways to ensure timely and equitable access. This expert consensus, developed through the Delphi methodology, analyzes key barriers to the referral process and proposes structured solutions to enhance collaboration between referring treatment centers (RTCs) and qualified treatment centers (QTCs).
View Article and Find Full Text PDFEur J Haematol
September 2025
Department of Hematology-Oncology, Texas Tech University Health Sciences Center, Lubbock, Texas, USA.
B-cell maturation antigen (BCMA)-directed chimeric antigen receptor (CAR) T-cell therapies have revolutionized the approach and management of relapsed/refractory multiple myeloma (RRMM), and as of 2025, idecabtagene vicleucel (ide-cel) and ciltacabtagene autoleucel (cilta-cel) are the only BCMA-targeted CAR T-cell therapies approved by the FDA. Exceptional responses were demonstrated for heavily pretreated patients in the KarMMa-1 trial, reporting a 73% overall response rate (ORR) and 98% in the CARTITUDE-1 trial. Furthermore, both therapies show a significant improvement in progression-free survival (PFS) compared to standard regimens when administered in earlier lines.
View Article and Find Full Text PDFEur J Case Rep Intern Med
August 2025
Division of Hematology and Oncology, UNM Comprehensive Cancer Center, Albuquerque, USA.
Background: Blinatumomab and inotuzumab ozogamicin (InO) are B-cell targeted agents used in the frontline and relapsed/refractory treatment of B-cell acute lymphoblastic leukaemia (B-ALL). Blinatumomab, a bispecific T-cell engager that targets CD19 and CD3, and InO, an antibody-drug conjugate targeting CD22, have both shown efficacy. However, recent reports have noted lineage conversion as a complication when these agents are used individually or sequentially.
View Article and Find Full Text PDF