98%
921
2 minutes
20
Early and accurate detection of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and influenza viruses at the point-of-care is crucial for reducing disease transmission during the current pandemic and future flu seasons. To prepare for potential cocirculation of these two viruses, we report a valve-enabled, paper-based sample preparation device integrated with isothermal amplification for their simultaneous detection. The device incorporates (1) virus lysis and RNA enrichment, enabled by ball-based valves for sequential delivery of reagents with no pipet requirement, (2) reverse transcription loop-mediated isothermal amplification, carried out in a coffee mug, and (3) colorimetric detection. We have used the device for simultaneously detecting inactivated SARS-CoV-2 and influenza A H1N1 viruses in 50 min, with limits of detection at 2 and 6 genome equivalents, respectively. The device was further demonstrated to detect both viruses in environmental samples.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8609915 | PMC |
http://dx.doi.org/10.1021/acssensors.1c01718 | DOI Listing |
Nanoscale
September 2025
Department of Bioengineering & Nano-Bioengineering, Research Center for Bio Materials and Process Development, Incheon National University, Incheon 22012, Republic of Korea.
Rolling circle amplification (RCA) has emerged as a highly versatile and robust isothermal amplification technology, offering exceptional sensitivity, specificity, and scalability for next-generation molecular diagnostics and multi-omics research. Its ability to generate long, repetitive DNA sequences with high fidelity has made it a pivotal tool in disease diagnostics, genomic analysis, and spatial transcriptome profiling. Recent advancements have expanded RCA into various formats, including solution-phase, solid-phase, hydrogel-based, and digital RCA, enhancing its analytical performance and adaptability across diverse biological applications.
View Article and Find Full Text PDFAnal Sci
September 2025
School of Animal Husbandry and Veterinary Medicine, Jiangsu Vocational College of Agriculture and Forestry, Jurong, 212400, People's Republic of China.
Staphylococcus aureus (S. aureus) and methicillin-resistant S. aureus (MRSA) are important pathogens that are closely associated with hospital-acquired and community-acquired infections.
View Article and Find Full Text PDFPlant Dis
September 2025
Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu, China;
Grape white rot, caused by Coniella vitis, is a devastating disease that affects grape production in China and worldwide, resulting in substantial yield and quality losses. Early and accurate detection of C. vitis is critical for effective disease management.
View Article and Find Full Text PDFAnalyst
September 2025
Department of Bioengineering, University of Washington, Seattle, WA 98105, USA.
Curable sexually transmitted infections (STIs) caused by the bacteria (CT) and (NG) are widespread globally. These infections are particularly dangerous for female patients, causing pelvic inflammatory disease, infertility, and increased risk of HIV acquisition. Vaginal self-swab sampling can improve access to STI screening but is still subject to treatment delays due to centralized processing.
View Article and Find Full Text PDFJ AOAC Int
September 2025
Office of Laboratory Operations and Applied Science, Human Foods Program, U.S. Food and Drug Administration, College Park, Maryland.
Background: As a leading cause of foodborne illness worldwide, detection of Salmonella enterica subsp. enterica serovar Typhimurium is essential for food safety and public health.
Objective: This study aimed to develop a loop-mediated isothermal amplification (LAMP) assay for the rapid and sensitive detection of Salmonella ser.