Mechanical Properties of Al Foams Subjected to Compression by a Cone-Shaped Indenter.

ACS Omega

National Key Laboratory of Science and Technology on Advanced Composites in Special Environments, Harbin Institute of Technology, Harbin 150001, P. R. China.

Published: October 2021


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Indentation tests and numerical simulations were conducted to investigate the effects of the indenter parameters (diameter and cone angle) and the relative density of Aluminum (Al) foams on the deformation mechanism of closed-cell Al foams, load response, and energy-absorbing capability. The results demonstrated that the densification occurred below the indenter, and cell tearing and bending occurred on both sides of the indenter, while the lateral plastic deformation insignificantly took place during the indentation tests. The load response and absorbed energy per unit volume dramatically increased with the cone angle of the indenter and the relative density of Al foams. However, the load response slightly increased but the absorbed energy per unit volume linearly decreased with the diameter of the indenter. Interestingly, the energy-absorption efficiency was independent of the diameter and cone angle of the indenter, and the relative density of Al foams as well. Our results suggest the indentation tests are recommended approaches to reflect the mechanical properties of closed-cell Al foams.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8552331PMC
http://dx.doi.org/10.1021/acsomega.1c04217DOI Listing

Publication Analysis

Top Keywords

indentation tests
12
cone angle
12
relative density
12
load response
12
mechanical properties
8
diameter cone
8
closed-cell foams
8
foams load
8
absorbed energy
8
energy unit
8

Similar Publications

Matrix metalloproteinases (MMPs) and a disintegrin and metalloproteinase with thrombospondin motifs (ADAMTS) significantly impact articular cartilage biomechanical properties in osteoarthritis (OA). However, comprehensive understanding of biomechanical responses and the efficacy of potential therapeutic interventions remains limited. This study investigates how MMPs and ADAMTS synergistically degenerate cartilage biomechanical properties under different loading conditions, and evaluates the preventive role of cartilage oligomeric matrix protein (COMP) and tissue inhibitor of metalloproteinase-3 (TIMP-3).

View Article and Find Full Text PDF

Hyperelastic characterization deep indentation.

Soft Matter

September 2025

Mechanical Engineering Department, Institute of Applied Mathematics School of Biomedical Engineering, University of British Columbia, Vancouver, BC V6T 1Z4, Canada.

Hyperelastic material characterization is crucial for sensing and understanding the behavior of soft materials-such as tissues, rubbers, hydrogels, and polymers-under quasi-static loading before failure. Traditional methods typically rely on uniaxial tensile tests, which require the cumbersome preparation of dumbbell-shaped samples for clamping in a uniaxial testing machine. In contrast, indentation-based methods, which are non-destructive and can be conducted without sample preparation, remain underexplored.

View Article and Find Full Text PDF

Single-crystal 4H silicon carbide (4H-SiC) is a key substrate material for third-generation semiconductor devices, where surface and subsurface integrity critically affect performance and reliability. This study systematically examined the evolution of surface morphology and subsurface damage (SSD) during nanoscratching of 4H-SiC under varying normal loads (0-100 mN) using a nanoindenter equipped with a diamond Berkovich tip. Scratch characteristics were assessed using scanning electron microscopy (SEM), while cross-sectional SSD was characterised via focused ion beam (FIB) slicing and transmission electron microscopy (TEM).

View Article and Find Full Text PDF

In this study, under varying PDSP (plunging depths of stirring pin) and process parameters, refill friction stir spot welding tests were performed on 6061-T6 aluminum alloy, relying on a stirring tool with a 12 mm sleeve diameter and an 8 mm stirring pin diameter. The results manifested the internal defects in the weld zone when PDSP was 0, notwithstanding the alterations in process parameters. However, these flaws disappeared when PDSP was 0.

View Article and Find Full Text PDF

Characterization of Hard Coatings Using Acoustic Emission.

Materials (Basel)

August 2025

Institute of Materials Science, Faculty of Materials Science and Technology in Trnava, Slovak University of Technology in Bratislava, Ulica Jána Bottu 25, 917 24 Trnava, Slovakia.

Acoustic emission (AE) testing is a non-destructive method used in various applications. In our work we demonstrate its capabilities and potential in studying the functional properties of physical vapor deposited (PVD) coatings. The goal was to classify the coating damage during indentation testing more objectively by quantifying specific imprint features.

View Article and Find Full Text PDF