Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Diffuse invasion is the primary cause of treatment failure of glioblastoma (GBM). Previous studies on GBM invasion have long been forced to use the resected tumor mass cells. Here, a strategy to reliably isolate matching pairs of invasive (GBM ) and tumor core (GBM ) cells from the brains of 6 highly invasive patient-derived orthotopic models is described. Direct comparison of these GBM and GBM cells reveals a significantly elevated invasion capacity in GBM cells, detects 23/768 miRNAs over-expressed in the GBM cells (miRNA ) and 22/768 in the GBM cells (miRNA ), respectively. Silencing the top 3 miRNAs (miR-126, miR-369-5p, miR-487b) successfully blocks invasion of GBM cells in vitro and in mouse brains. Integrated analysis with mRNA expression identifies miRNA target genes and discovers KCNA1 as the sole common computational target gene of which 3 inhibitors significantly suppress invasion in vitro. Furthermore, in vivo treatment with 4-aminopyridine (4-AP) effectively eliminates GBM invasion and significantly prolongs animal survival times (P = 0.035). The results highlight the power of spatial dissection of functionally accurate GBM and GBM cells in identifying novel drivers of GBM invasion and provide strong rationale to support the use of biologically accurate starting materials in understanding cancer invasion and metastasis.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8655179PMC
http://dx.doi.org/10.1002/advs.202101923DOI Listing

Publication Analysis

Top Keywords

gbm cells
28
gbm
14
gbm invasion
12
invasion
9
spatial dissection
8
tumor mass
8
cells
8
gbm gbm
8
cells mirna
8
dissection invasive
4

Similar Publications

Epithelioid glioblastoma (eGBM) is a rare subtype of glioblastoma, generally associated with a poorer prognosis than conventional GBM despite maximum resection and standard chemoradiotherapy. Here, we report a case of a 78-year-old man who presented with left hemiplegia and a well-circumscribed right frontal lobe lesion on imaging, initially suspected to be a metastatic brain tumor. Surgical resection revealed a firm, clearly demarcated mass.

View Article and Find Full Text PDF

Purpose: Glioblastoma (GBM) remains one of the most aggressive primary brain tumors with poor survival outcomes and a lack of approved therapies. A promising novel approach for GBM is the application of photodynamic therapy (PDT), a localized, light-activated treatment using tumor-selective photosensitizers. This narrative review describes the mechanisms, delivery systems, photosensitizers, and available evidence regarding the potential of PDT as a novel therapeutic approach for GBM.

View Article and Find Full Text PDF

Background: The gut microbiota plays a crucial role in the development of glioma. With the evolution of artificial intelligence technology, applying AI to analyze the vast amount of data from the gut microbiome indicates the potential that artificial intelligence and computational biology hold in transforming medical diagnostics and personalized medicine.

Methods: We conducted metagenomic sequencing on stool samples from 42 patients diagnosed with glioma after operation and 30 non-intracranial tumor patients and developed a Gradient Boosting Machine (GBM) machine learning model to predict the glioma patients based on the gut microbiome data.

View Article and Find Full Text PDF

Extrachromosomal DNA-Driven Oncogene Spatial Heterogeneity and Evolution in Glioblastoma.

Cancer Discov

September 2025

Evolutionary Dynamics Group, Centre for Cancer Evolution, Barts Cancer Institute, Queen Mary University of London, London, United Kingdom.

Unlabelled: Oncogenes amplified on extrachromosomal DNA (ecDNA) contribute to treatment resistance and poor survival across cancers. Currently, the spatiotemporal evolution of ecDNA remains poorly understood. In this study, we integrate computational modeling with samples from 94 treatment-naive human glioblastomas (GBM) to investigate the spatiotemporal evolution of ecDNA.

View Article and Find Full Text PDF

Preventing Glioblastoma Relapse by Igniting Innate Immunity through Mitochondrial Stress in the Surgical Cavity.

Adv Mater

September 2025

Department of Neurosurgery, Qilu Hospital and Shandong Key Laboratory of Brain Health and Function Remodeling, Institute of Brain and Brain-Inspired Science, Jinan Microecological Biomedicine Shandong Laboratory, Cheeloo College of Medicine, Shandong University, 107 Wenhua Xi Road, Jinan, Shandong,

Innate immunity is crucial in orchestrating the brain immune response, however, glioblastoma multiforme (GBM) has evolved sophisticated mechanisms to evade innate immune surveillance, posing significant challenges for current immunotherapies. Here, a therapeutic strategy is reported that aims at reactivating innate immune responses in GBM via targeted induction of mitochondrial stress, thereby enhancing tumor immunogenicity. Specifically, innate immune-stimulating nanoparticles (INSTNA) are developed, encapsulating positively charged iridium-based complexes (Ir-mito) and small interfering RNA against Methylation-Controlled J protein (si-MCJ) to attenuate mitochondrial respiration.

View Article and Find Full Text PDF