98%
921
2 minutes
20
Impaired sensorimotor circuits have been suggested in Attention-deficit/hyperactivity disorder (ADHD). NRXN1, highly expressed in cortex and cerebellum, was one of the candidate risk genes for ADHD, while its effects on sensorimotor circuits are unclear. In this content, we aimed to investigate the differential brain effects as functions of the cumulative genetic effects of NRXN1 variants in ADHD and healthy controls (HCs), identifying a potential pathway mapping from NRXN1, sensorimotor circuits, to ADHD. Magnetic resonance imaging, blood samples and clinical assessments were acquired from 53 male ADHD and 46 sex-matched HCs simultaneously. The effects of the cumulative genetic effects of NRXN1 variants valued by poly-variant risk score (PRS), on brain function was measured by resting-state functional connectivity (rs-FC) of cerebrocerebellar circuits. Mediation analyses were conducted to evaluate the association between NRXN1, functional abnormality, and ADHD diagnosis, as well as ADHD symptoms. The results were validated by bootstrapping and 10,000 times permutation tests. The rs-FC analyses demonstrated significant mediation models for ADHD diagnosis, and emphasized the involvement of cerebellum, middle cingulate gyrus and temporal gyrus, which are crucial parts of sensorimotor circuits. The current study suggested NRXN1 conferred risk for ADHD by regulating the function of sensorimotor circuits.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s11682-021-00579-5 | DOI Listing |
Acta Pharmacol Sin
September 2025
Key Laboratory of Mental Health of the Ministry of Education, Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Guangdong-Hong Kong Joint Laboratory for Psychiatric Disorders, Guangdong Province Key Laboratory of Psychiatric Disorders, Guangdong Bas
Recent investigations into the rapid antidepressant effects of ketamine, along with studies on schizophrenia-related susceptibility genes, have highlighted the GluN2A subunit as a critical regulator of both emotion and cognition. However, the specific impacts of acute pharmacological inhibition of GluN2A-containing NMDA receptors on brain microcircuits and the subsequent behavioral consequences remain poorly understood. In this study, we first examined the effects of MPX-004, a selective GluN2A NMDA receptor inhibitor, on behavior within the dorsomedial prefrontal cortex (dmPFC).
View Article and Find Full Text PDFBrain Res
September 2025
Institute of Rehabilitation Medicine, School of Rehabilitation Medicine, Binzhou Medical University, Yantai 264003, PR China. Electronic address:
Ischemic stroke is a serious cerebrovascular disease that is often accompanied by debilitating sensorimotor deficits and persistent cognitive deficits, which seriously affect patients' quality of life. DHYZ, a traditional Chinese herbal formula, has shown significant efficacy in restoring neurological function in ischemic regions of the brain, but its potential for improving poststroke cognitive impairment remains underdeveloped. In this study, the middle cerebral artery occlusion/reperfusion (MCAO/R) model was used to reproduce the pathological process of ischemic stroke in humans.
View Article and Find Full Text PDFbioRxiv
August 2025
Behavior and Metabolism Laboratory, Champalimaud Research, Champalimaud Foundation, Lisbon, Portugal.
Nutrient state shapes not only what animals eat, but how they eat it. In , protein deprivation prolongs protein-specific feeding bursts, yet the motor mechanism underlying this change remains unknown. Using EM connectomics, we identified a feed-forward pathway from protein-sensitive gustatory receptor neurons to swallowing motor neurons.
View Article and Find Full Text PDFNeural Regen Res
September 2025
Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China.
Spinal V3 interneurons are glutamatergic neurons that are distributed among the dorsal, intermediate, and ventral spinal cord. They are involved in broad neural circuit connections in the central nervous system. Functionally, they play important roles in locomotion, such as the maintenance of robust and balanced gaits during walking.
View Article and Find Full Text PDFNat Commun
September 2025
Université Paris-Saclay, CNRS, Institut des neurosciences Paris-Saclay, Saclay, France.
An animal's feeding state changes its behavioral priorities and thus influences even nonfeeding-related decisions. How the feeding state information is transmitted to nonfeeding-related circuits and what circuit mechanisms are involved in biasing nonfeeding-related decisions remain open questions. By combining calcium imaging, neuronal manipulations, behavioral analysis and computational modeling, we determined that the competition between different aversive responses to mechanical cues is biased by changes in the feeding state.
View Article and Find Full Text PDF