Research of a Novel Ag Temperature Sensor Based on Fabric Substrate Fabricated by Magnetron Sputtering.

Materials (Basel)

School of Textile Science and Engineering, Tiangong University, Tianjin 300387, China.

Published: October 2021


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

TPU-coated polyester fabric was used as the substrate of a flexible temperature sensor and Ag nanoparticles were deposited on its surface as the temperature sensing layer by the magnetron sputtering method. The effects of sputtering powers and heat treatment on properties of the sensing layers, such as the temperature coefficient of resistance (TCR), linearity, hysteresis, drift, reliability, and bending resistance, were mainly studied. The results showed that the TCR (0.00234 °C) was the highest when sputtering power was 90 W and sputtering pressure was 0.8 Pa. The crystallinity of Ag particles would improve, as the TCR was improved to 0.00262 °C under heat treatment condition at 160°. The Ag layer obtained excellent linearity, lower hysteresis and drift value, as well as good reliability and bending resistance when the sputtering power was 90 W. The flexible temperature sensor based on the coated polyester fabric improved the softness and comfortableness of sensor, which can be further applied in intelligent wearable products.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8540354PMC
http://dx.doi.org/10.3390/ma14206014DOI Listing

Publication Analysis

Top Keywords

temperature sensor
12
sensor based
8
fabric substrate
8
magnetron sputtering
8
polyester fabric
8
flexible temperature
8
heat treatment
8
hysteresis drift
8
reliability bending
8
bending resistance
8

Similar Publications

High-sensitivity, multiparameter sensing is increasingly critical for environmental monitoring and electronics. Existing sensing platforms struggle to integrate precise, rapid, and stable monitoring of parts per billion-level hazardous gases and temperature within a single miniaturized device. This study developed a novel sensor based on two-dimensional (2D) indium selenide (InSe), complemented by first-principles density functional theory calculations elucidating the layer-dependent NO adsorption mechanism.

View Article and Find Full Text PDF

Controllable synthesis of -hexagonal ZnAl-LDHs nanosheets for high-performance room-temperature ethanol gas sensing.

Dalton Trans

September 2025

School of Electronics and Information Engineering, Hebei University of Technology, Tianjin Key Laboratory of Electronic Materials and Devices, 5340 Xiping Road, Beichen District, Tianjin, 300401, China.

Layered double hydroxides (LDHs) have attracted considerable attention in gas sensing applications due to their highly tunable chemical composition and unique two-dimensional layered architecture. In this study, a series of ZnAl-LDHs with varying Zn/Al molar ratios were synthesized a facile hydrothermal method, and their ethanol sensing performance at room temperature was systematically evaluated. The influence of composition on the structural, morphological, and electronic properties of the materials was thoroughly investigated using a suite of characterization techniques, including XRD, FTIR, SEM, TEM, BET, XPS, PL, and EPR.

View Article and Find Full Text PDF

Recent evidence indicates that the concentration of ATP remains stable during neuronal activity due to activity-dependent ATP production. However, the mechanisms of activity-dependent ATP production remain controversial. To stabilize the ATP concentration, feedforward mechanisms, which may rely on calcium or the sodium-potassium pump, do not require changes in the ATP and ADP concentrations.

View Article and Find Full Text PDF

Thermoresponsive dynamic wet-adhesive epidermal interface for motion-robust multiplexed sweat biosensing.

Biosens Bioelectron

September 2025

Tianjin Key Laboratory of Life and Health Detection, Life and Health Intelligent Research Institute, Tianjin University of Technology, Tianjin, 300384, PR China. Electronic address:

Wearable sweat sensors offer noninvasive health monitoring through multiplexed biomarker analysis, delivering real-time diagnostics with continuous operational capability. However, chronic cutaneous interface hydration during prolonged monitoring induces adhesive delamination phenomena that manifest as signal attenuation, which fundamentally limits their clinical reliability. To address this challenge, we developed a thermodynamically adaptive polymer interface combining three functional components: mussel-inspired catechol moieties for moisture-tolerant adhesion, hydrophobic acrylates ensuring mechanical stability, and N-isopropylacrylamide enabling thermal responsiveness.

View Article and Find Full Text PDF

Room Temperature Flexible Gas Sensor Based on MOF-Derived Porous Carbon Skeletons Loaded with ZnO Nanoparticles and DMF Detection.

ACS Appl Mater Interfaces

September 2025

Key Laboratory of Atomic and Molecular Physics & Functional Materials of Gansu Province, College of Physics and Electronic Engineering, Northwest Normal University, Lanzhou 730070, China.

Overcoming the persistent challenges of high operating temperatures and poor selectivity in metal oxide semiconductor (MOS) gas sensors, this work enhances defect sites in the sensing material through heterostructure construction and builds mesoporous architectures using MOF-derived carbon skeletons as templates. The synergistic effects of multiple mechanisms significantly improve gas-sensing performance, successfully fabricating a ZnO/PCS flexible room-temperature gas sensor with exceptional room-temperature DMF detection capabilities. The nitrogen-containing porous carbon skeletons (PCSs) template shows a stable mesoporous microstructure with large pore volume.

View Article and Find Full Text PDF