Brønsted Acid Catalyzed Dearomatization by Intramolecular Hydroalkoxylation/Claisen Rearrangement: Diastereo- and Enantioselective Synthesis of Spirolactams.

Angew Chem Int Ed Engl

State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory of Chemical Biology of Fujian Province, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China.

Published: December 2021


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Described herein is a novel Brønsted acid catalyzed intramolecular hydroalkoxylation/Claisen rearrangement, allowing the practical and atom-economic synthesis of a range of valuable spirolactams from readily available ynamides in generally good to excellent yields with excellent diastereoselectivities and broad substrate scope. Importantly, an unexpected dearomatization of nonactivated arenes and heteroaromatic compounds is involved in this tandem sequence. Moreover, an asymmetric version of this tandem cyclization was also achieved by efficient kinetic resolution by chiral phosphoric acid catalysis. In addition, the [3,3]-rearrangement is shown to be kinetically preferred over the related [1,3]-rearrangement by theoretical calculations.

Download full-text PDF

Source
http://dx.doi.org/10.1002/anie.202113464DOI Listing

Publication Analysis

Top Keywords

brønsted acid
8
acid catalyzed
8
intramolecular hydroalkoxylation/claisen
8
hydroalkoxylation/claisen rearrangement
8
catalyzed dearomatization
4
dearomatization intramolecular
4
rearrangement diastereo-
4
diastereo- enantioselective
4
enantioselective synthesis
4
synthesis spirolactams
4

Similar Publications

Objective: This study aims to elucidate how butyrate, a short-chain fatty acid, regulates the Treg/Th17 balance in ulcerative colitis (UC) via the cAMP-PKA/mTOR signaling pathway, offering novel treatment strategies.

Methods: Dextran sulfate sodium (DSS) was used to induce ulcerative colitis in a mouse model. Various butyrate dosages were administered to the mice.

View Article and Find Full Text PDF

Neuroinflammatory Consequences of Rhinovirus Infection in Human Epithelial and Neuronal Models.

Lung

September 2025

The Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, 97 Lisburn Road, Belfast, Belfast BT9 7BL, UK.

Introduction: Rhinovirus (RV) is the leading cause of exacerbations of lung disease. A sensory neuronal model, derived from human dental pulp stem cells and differentiated into peripheral neuronal equivalents (PNEs), was used to examine RV's effects on airway sensory nerves. We investigated whether RV can directly infect and alter PNEs or whether it exerts effects indirectly via the release of mediators from infected epithelial cells.

View Article and Find Full Text PDF

Fatty acid synthase in high and low lipid-producing strains of Mucor circinelloides: identification, phylogenetic analysis, and expression profiling during growth and lipid accumulation.

Biotechnol Lett

September 2025

Shandong Provincial Engineering Research Center for Precision Nutrition and Healthy Elderly Care, Qilu Medical University, 1678 Renmin West Road, Zibo, 255300, People's Republic of China.

Fatty acid synthase (FAS) is one of the most important enzymes in lipid biosynthesis, which can catalyze the reaction of acetyl-CoA and malonyl-CoA to produce fatty acids. However, the structure, function, and molecular mechanism of FAS regulating lipid synthesis in the fungus Mucor circinelloides are unclear. In the present study, two encoding fas genes in the high lipid-producing strain WJ11 and low lipid-producing strain CBS277.

View Article and Find Full Text PDF

Serine hydroxymethyltransferase (SHMT) is a critical enzyme in the one-carbon (1C) metabolism pathway catalyzing the reversible conversion of L-Ser into Gly and concurrent transfer of 1C unit to tetrahydrofolate (THF) to give 5,10-methylene-THF (5,10-MTHF), which is used in the downstream syntheses of biomolecules critical for cell proliferation. The cellular 1C metabolism is hijacked by many cancer types to support cancer cell proliferation, making SHMT a promising target for the design and development of novel small-molecule antimetabolite chemotherapies. To advance structure-assisted drug design, knowledge of SHMT catalysis is crucial, but can only be fully realized when the atomic details of each reaction step governed by the acid-base catalysis are elucidated by visualizing active site hydrogen atoms.

View Article and Find Full Text PDF