Antitumor activity and immunomodulation mechanism of a novel polysaccharide extracted from Polygala tenuifolia Willd. evaluated by S180 cells and S180 tumor-bearing mice.

Int J Biol Macromol

Key Laboratory of Food Nutrition and Safety, Ministry of Education, College of Food Engineering and Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China. Electronic address:

Published: December 2021


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

We recently isolated a polysaccharide from Polygala tenuifolia Willd. (PTP) and reported that such a PTP could induce cell apoptosis with FAS/FAS-L-mediated death receptor pathway in human lung cancer cells. Herein, we indicate antitumor activity and immunoregulation of PTP for S180 sarcoma cells by in vitro and in vivo targeting. In vitro, S180 cells took on prominent characteristics of apoptosis under-treated with PTP in follow-up antitumor activity studies, including irregular shrinkage and fragmentation nuclear, apoptotic bodies formation, and reduction of mitochondrial membrane potential (MMP). Additionally, flow cytometry indicated that the number of normal cells (FITC/PI) gradually decreased from 98.08% to 16.31%, while the number of apoptotic cells (FITC/PI or FITC/PI) increased from 0.87% to 54.84%. The ratio of BAX and Bcl-2 increased, which promoted the release of Cytochrome C (CytC), and it further maximized the expression of activated-caspase-9/-3. Additionally, the PTP revised the immune organ indexes, the activities of NK cells and lymphocytes, and induced the secretion of IL-2 (7.34-16.17%), IFN-γ (14.34-20.85%) and TNF-α (12.32-22.58%) in vivo. Thus, PTP can induce cell apoptosis and activate the immunoregulation mechanism thereby exhibiting biological activity.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ijbiomac.2021.10.025DOI Listing

Publication Analysis

Top Keywords

antitumor activity
12
polygala tenuifolia
8
tenuifolia willd
8
s180 cells
8
ptp induce
8
induce cell
8
cell apoptosis
8
cells fitc/pi
8
cells
7
ptp
6

Similar Publications

Resolve and regulate: Alum nanoplatform coordinating STING availability and agonist delivery for enhanced anti-tumor immunotherapy.

Biomaterials

September 2025

Key Laboratory of Biopharmaceutical Preparation and Delivery, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China. Electronic address:

The stimulator of interferon genes (STING) pathway represents a promising target in cancer immunotherapy. However, the clinical translation of cyclic dinucleotide (CDN)-based STING agonists remains hindered by insufficient formation of functional CDN-STING complexes. This critical bottleneck arises from two interdependent barriers: inefficient cytosolic CDN delivery and tumor-specific STING silencing via DNA methyltransferase-mediated promoter hypermethylation.

View Article and Find Full Text PDF

Pterostilbene as a promising natural anticancer agent in gynecological cancers.

Med Oncol

September 2025

Department of Pharmacognosy, Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt.

Gynecological cancer, encompassing cancers such as endometrial and cervical cancer, is a growing concern worldwide, with a rising incidence and significant impact on women's health. Pterostilbene (PT), a natural compound, has shown promising therapeutic potential in gynecological cancer treatment. This review aims to summarize the current state of knowledge on PT's effects in gynecological cancer, focusing on its molecular mechanisms, preclinical studies, and clinical trials.

View Article and Find Full Text PDF

Dendritic cells: understanding ontogeny, subsets, functions, and their clinical applications.

Mol Biomed

September 2025

National Key Laboratory of Immunity and Inflammation & Institute of Immunology, College of Basic Medical Sciences, Naval Medical University, Shanghai, 200433, China.

Dendritic cells (DCs) play a central role in coordinating immune responses by linking innate and adaptive immunity through their exceptional antigen-presenting capabilities. Recent studies reveal that metabolic reprogramming-especially pathways involving acetyl-coenzyme A (acetyl-CoA)-critically influences DC function in both physiological and pathological contexts. This review consolidates current knowledge on how environmental factors, tumor-derived signals, and intrinsic metabolic pathways collectively regulate DC development, subset differentiation, and functional adaptability.

View Article and Find Full Text PDF

Tumor-associated macrophages (TAMs) act as a vital player in the immunosuppressive tumor microenvironment (TME) and have received widespread attention in the treatment of cancer in recent times. Nevertheless, simultaneously inducing TAM repolarization and strengthening their phagocytic ability on cancer cells is still a significant challenge. Ferroptosis has received widespread attention due to its lethal effects on tumor cells, but its role in TAMs and its impact on tumor progression have not yet been defined.

View Article and Find Full Text PDF

Cuproptosis relies on intracellular copper accumulation and shows great potential in tumor therapy. However, the high content of glutathione (GSH) in tumor cells limits its effectiveness. Furthermore, the mechanism of immune activation mediated by cuproptosis remains unclear.

View Article and Find Full Text PDF