Diversity and ecology of protists revealed by metabarcoding.

Curr Biol

Department of Organismal Biology (Systematic Biology), Uppsala University, Norbyv. 18D, 75236 Uppsala, Sweden.

Published: October 2021


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Protists are the dominant eukaryotes in the biosphere where they play key functional roles. While protists have been studied for over a century, it is the high-throughput sequencing of molecular markers from environmental samples - the approach of metabarcoding - that has revealed just how diverse, and abundant, these small organisms are. Metabarcoding is now routine to survey environmental diversity, so data have rapidly accumulated from a multitude of environments and at different sampling scales. This mass of data has provided unprecedented opportunities to study the taxonomic and functional diversity of protists, and how this diversity is organised in space and time. Here, we use metabarcoding as a common thread to discuss the state of knowledge in protist diversity research, from technical considerations of the approach to important insights gained on diversity patterns and the processes that might have structured this diversity. In addition to these insights, we conclude that metabarcoding is on the verge of an exciting added dimension thanks to the maturation of high-throughput long-read sequencing, so that a robust eco-evolutionary framework of protist diversity is within reach.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.cub.2021.07.066DOI Listing

Publication Analysis

Top Keywords

diversity
8
protist diversity
8
metabarcoding
5
diversity ecology
4
protists
4
ecology protists
4
protists revealed
4
revealed metabarcoding
4
metabarcoding protists
4
protists dominant
4

Similar Publications

BackgroundA stable guiding system is essential for successful carotid artery stenting (CAS), particularly when navigating tortuous aortic or supra-aortic anatomy. However, data on the mechanical behavior of stent delivery systems remain scarce.ObjectiveTo assess and compare the bending stiffness and trackability of five commercially available carotid stent delivery systems using bench-top experiments.

View Article and Find Full Text PDF

The relationship between, and joint selection on, a host and its microbes-the holobiont-can impact evolutionary and ecological outcomes of the host and its microbial community. We develop an agent-based modelling framework for understanding the ecological dynamics of hosts and their microbiomes. Our model incorporates numerous microbial generations per host generation allowing selection on both host and microbes.

View Article and Find Full Text PDF

Background: Fermented foods vary significantly by food substrate and regional consumption patterns. Although they are consumed worldwide, their intake and potential health benefits remain understudied. Europe, in particular, lacks specific consumption recommendations for most fermented foods.

View Article and Find Full Text PDF

Electron-Rich Macrocycle-Based Metal-Organic Frameworks for Efficient Photocatalytic CO Reduction.

J Am Chem Soc

September 2025

State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, China.

Metal-organic frameworks (MOFs) are distinguished by their structural diversity, tunable electronic properties, and exceptional performance in various applications. Notably, the electron-donating ability of ligands significantly enhances the ligand-to-metal charge transfer (LMCT) processes within these frameworks, thereby promoting efficient charge migration. Herein, we developed two electron-rich macrocyclic ligands derived from phenothiazine- and phenoxazine-functionalized calix[3]arenes, alongside their corresponding cobalt-coordinated MOFs.

View Article and Find Full Text PDF