98%
921
2 minutes
20
Background: Cardiovascular disease (CVD) is a major cause of morbidity and mortality in kidney transplant recipients (KTRs). CVD risk scores underestimate risk in this population as CVD is driven by clustering of traditional and non-traditional risk factors, which lead to prognostic pathological changes in cardiovascular structure and function. While exercise may mitigate CVD in this population, evidence is limited, and physical activity levels and patient activation towards exercise and self-management are low. This pilot study will assess the feasibility of delivering a structured, home-based exercise intervention in a population of KTRs at increased cardiometabolic risk and evaluate the putative effects on cardiovascular structural and functional changes, cardiorespiratory fitness, quality of life, patient activation, healthcare utilisation and engagement with the prescribed exercise programme.
Methods And Analysis: Fifty KTRs will be randomised 1:1 to: (1) the intervention; a 12week, home-based combined resistance and aerobic exercise intervention; or (2) the control; usual care. Intervention participants will have one introductory session for instruction and practice of the recommended exercises prior to receiving an exercise diary, dumbbells, resistance bands and access to instructional videos. The study will evaluate the feasibility of recruitment, randomisation, retention, assessment procedures and the intervention implementation. Outcomes, to be assessed prior to randomisation and postintervention, include: cardiac structure and function with stress perfusion cardiac MRI, cardiorespiratory fitness, physical function, blood biomarkers of cardiometabolic health, quality of life and patient activation. These data will be used to inform the power calculations for future definitive trials.
Ethics And Dissemination: The protocol was reviewed and given favourable opinion by the East Midlands-Nottingham 2 Research Ethics Committee (reference: 19/EM/0209; 14 October 2019). Results will be published in peer-reviewed academic journals and will be disseminated to the patient and public community via social media, newsletter articles and presentations at conferences.
Trial Registration Number: NCT04123951.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8493915 | PMC |
http://dx.doi.org/10.1136/bmjopen-2020-046945 | DOI Listing |
Adv Sci (Weinh)
September 2025
Key Laboratory of Emergency and Trauma of Ministry of Education, The First Affiliated Hospital, NHC Key Laboratory of Tropical Disease Control, School of Tropical Medicine & The Second Affiliated Hospital, Hainan Medical University, Haikou, 571199, China.
Circulating tumor cells (CTCs) carry intact tumor molecular information, making them invaluable for personalized cancer monitoring. However, conventional capture methods, relying on passive diffusion, suffer from low efficiency due to insufficient collision frequency, severely limiting clinical utility. Herein, a magnetic micromotor-functionalized DNA-array hunter (MMDA hunter) is developed by integrating enzyme-propelled micromotors, magnetic nanoparticles, and nucleic acid aptamers into distinct functional partitions of a DNA tile self-assembly structure.
View Article and Find Full Text PDFJ Phys Chem Lett
September 2025
Pacific Northwest National Laboratory, Richland, Washington 99354, United States.
Water-ion interactions govern the physicochemical properties of aqueous solutions, impacting the structure of the hydrogen bonding network and ion diffusivities. To elucidate these effects under alkaline conditions relevant to diverse application spaces, we examined NaOD-DO solutions using two-dimensional infrared spectroscopy (2D-IR), small-angle X-ray scattering (SAXS), and nuclear magnetic resonance spectroscopy (NMR). Vibrational energy transfer between the donor anion SeCN, used as a 2D-IR probe, and the acceptor anion OD was used to track the average separation distance of ions in the DO solutions, while SAXS and NMR experiments measured the structure of the bulk DO solvent.
View Article and Find Full Text PDFJ Mater Chem B
September 2025
Major in Bionano Engineering, School of Bio-Pharmaceutical Convergence, Hanyang University, Ansan, 155-88, Republic of Korea.
Membrane proteins are essential bio-macromolecules involved in numerous critical biological processes and serve as therapeutic targets for a wide range of modern pharmaceuticals. Small amphipathic molecules, called detergents or surfactants, are widely used for the isolation and structural characterization of these proteins. A key requirement for such studies is their ability to maintain membrane protein stability in aqueous solution, a task where conventional detergents often fall short.
View Article and Find Full Text PDFCell Physiol Biochem
September 2025
Department of Histology and Embryology and Vascular Biology Student Research Club, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, 85-092 Bydgoszcz, Poland, E-Mail:
Migrasomes are newly discovered, migration-dependent organelles that mediate the release of cellular contents into the extracellular environment through a process known as migracytosis. Since their identification in 2014, growing evidence has highlighted their critical roles in intercellular communication, organ development, mitochondrial quality control, and disease pathogenesis. Migrasome biogenesis is a complex, multi-step process tightly regulated by lipid composition, tetraspanin-enriched microdomains, and molecular pathways involving sphingomyelin synthase 2, Rab35, and integrins.
View Article and Find Full Text PDFInorg Chem
September 2025
Department of Chemistry and Chemical Engineering, Heze University, Heze, Shandong 274015, China.
Transition metal (TM)-doped silicon clusters represent critical model systems for understanding nanoscale hybridization and stability mechanisms. This study provides a comprehensive analysis of structural evolution, electronic properties, and thermodynamic stability in ruthenium-doped silicon clusters (RuSi̅, = 7-11) through integrated experimental and computational approaches. Anion photoelectron spectroscopy combined with density functional theory (DFT/B3LYP), coupled-cluster theory [CCSD(T)], and bonding analyses (AdNDP, NICS, ACID) reveals charge-state-dependent structural transitions, with full Ru encapsulation emerging at = 10 for anions and = 11 for neutrals.
View Article and Find Full Text PDF