Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

MR spectroscopic imaging (MRSI) noninvasively maps the metabolism of human brains. In particular, the imaging of D-2-hydroxyglutarate (2HG) produced by glioma isocitrate dehydrogenase (IDH) mutations has become a key application in neuro-oncology. However, the performance of full field-of-view MRSI is limited by B spatial nonuniformity and lipid artifacts from tissues surrounding the brain. Array coils that multiplex RF-receive and B -shim electrical currents (AC/DC mixing) over the same conductive loops provide many degrees of freedom to improve B uniformity and reduce lipid artifacts. AC/DC coils are highly efficient due to compact design, requiring low shim currents (<2 A) that can be switched fast (0.5 ms) with high interscan reproducibility (10% coefficient of variation for repeat measurements). We measured four tumor patients and five volunteers at 3 T and show that using AC/DC coils in addition to the vendor-provided second-order spherical harmonics shim provides 19% narrower spectral linewidth, 6% higher SNR, and 23% less lipid content for unrestricted field-of-view MRSI, compared with the vendor-provided shim alone. We demonstrate that improvement in MRSI data quality led to 2HG maps with higher contrast-to-noise ratio for tumors that coincide better with the FLAIR-enhancing lesions in mutant IDH glioma patients. Smaller Cramér-Rao lower bounds for 2HG quantification are obtained in tumors by AC/DC shim, corroborating with simulations that predicted improved accuracy and precision for narrower linewidths. AC/DC coils can be used synergistically with optimized acquisition schemes to improve metabolic imaging for precision oncology of glioma patients. Furthermore, this methodology has broad applicability to other neurological disorders and neuroscience.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8717863PMC
http://dx.doi.org/10.1002/nbm.4621DOI Listing

Publication Analysis

Top Keywords

spectroscopic imaging
8
isocitrate dehydrogenase
8
array coils
8
lipid artifacts
8
improving d-2-hydroxyglutarate
4
d-2-hydroxyglutarate spectroscopic
4
imaging mutant
4
mutant isocitrate
4
dehydrogenase glioma
4
glioma patients
4

Similar Publications

The human kidneys play a pivotal role in regulating blood pressure, water, and salt homeostasis, but assessment of renal function typically requires invasive methods. Deuterium metabolic imaging (DMI) is a novel, noninvasive technique for mapping tissue-specific uptake and metabolism of deuterium-labeled tracers. This study evaluates the feasibility of renal DMI at 7-Tesla (7T) to track deuterium-labeled tracers with high spatial and temporal resolution, aiming to establish a foundation for potential clinical applications in the noninvasive investigation of renal physiology and pathophysiology.

View Article and Find Full Text PDF

Infrared (IR) spectroscopic imaging combines the molecular specificity of vibrational spectroscopy with imaging capabilities of microscopy, potentially allowing for simultaneous quantitative observations of drugs and cellular response. However, accurately quantifying drug concentration within changing cells is complicated by the overlap between exogenous molecules' and native cellular spectra. Here, we address this challenge by developing a derivative of the widely used chemotherapeutic doxorubicin as a spectral bioprobe (DOX-IR) using a strongly absorbing metal-carbonyl moiety [(Cp)Fe(CO)].

View Article and Find Full Text PDF

In this study, a one-pot hydrothermal synthesis method was used to synthesize a novel gold-yttrium trimesic acid metal-organic framework (Au-Y-TMA MOF), demonstrating significant improvements over conventional single-metal MOFs, that is, yttrium trimesic acid (Y-TMA), in both supercapacitor applications and electrochemical antibiotic detection. The X-ray diffraction patterns of Au-Y-TMA confirmed the presence and impact of Au in the Y-TMA matrix, while field emission scanning electron microscopy (FE-SEM) images revealed a heterogeneous combination of gold nanoparticles (AuNPs) and Y-TMA, suggesting a nonuniform distribution and possible interaction. The developed half-cell supercapacitor exhibited a remarkable capacitance value of 1836 F/g at a current density of 5 A/g by galvanostatic charging-discharging (GCD) measurement.

View Article and Find Full Text PDF

To assess the efficacy of a mixed-dimensional van der Waals (vdW) heterostructure in modulating the optoelectronic responses of nanodevices, the charge transport properties of the transition-metal dichalcogenide (TMD)-based heterostructure comprising zero-dimensional (0D) WS quantum dots (QDs) and two-dimensional (2D) MoS flakes are critically analyzed. Herein, a facile strategy was materialized in developing an atomically thin phototransistor assembled from mechanically exfoliated MoS and WS QDs synthesized using a one-pot hydrothermal route. The amalgamated photodetectors exhibited a high responsivity of ∼8000 A/W at an incident power of 0.

View Article and Find Full Text PDF

Introduction: Image and near-infrared (NIR) spectroscopic data are widely used for constructing analytical models in precision agriculture. While model interpretation can provide valuable insights for quality control and improvement, the inherent ambiguity of individual image pixels or spectral data points often hinders practical interpretability when using raw data directly. Furthermore, the presence of imbalanced datasets can lead to model overfitting and consequently, poor robustness.

View Article and Find Full Text PDF