98%
921
2 minutes
20
Supercapacitors based on nonresponsive polymer hydrogels are gaining significant attention due to their fabrication simplicity and high potential for wearable electronics. However, the use of smart hydrogels in supercapacitor design remains unexplored. In this work, a smart externally controlled supercapacitor based on a temperature-responsive hydrogel doped with polypyrrole nanotubes (PPyNTs) is proposed. The redistribution of PPyNTs in the poly(-isopropylacrylamide) (PNIPAm) hydrogel can be reversibly controlled by light illumination or temperature increase, leading to on-demand formation/disruption of the nanotube conductive network, due to release/entrapping of the nanotubes from PNIPAm globule volume on surface. The switchable material was introduced in a supercapacitor design as an active and smart electrode, responsible for external control of charge transport and storage. The created device showed a switchable supercapacitor performance with an ability to significantly and rapidly change capacity under heating/cooling or light illumination. The external trigger was applied for static or dynamic control of supercapacitor behavior: prolongation of discharge time (with constant electric loading) or vice-versa pronounced acceleration of supercapacitor discharge. The proposed smart material-based supercapacitor can find a range of attractive applications in backup energy storage or high power pulse generation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsami.1c12228 | DOI Listing |
ISA Trans
August 2025
Department of Vehicle Engineering and Jiangsu Engineering Research Center of Vehicle Distributed Drive and Intelligent Wire Control Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China; Department of Vehicle Engineering and Jiangsu Engineering Research Center of Vehi
The steer-by-wire (SbW) system, as the core component of vehicle steering, needs to track the front wheel angle accurately. To mitigate the angle tracking accuracy degradation caused by D-Q axes coupling, time-varying motor electrical parameters, and load disturbance, a fractional-order adaptive fuzzy decentralized tracking control (FAFDTC) strategy is proposed in this paper. First, considering time-varying motor parameters, D-Q axes coupling, and fractional-order characteristics of components, a fractional-order SbW interconnected system is constructed to enhance its ability to characterize nonlinearities, time-varying dynamics, and system coupling.
View Article and Find Full Text PDFISA Trans
September 2025
School of Automation, Northwestern Polytechnical University,1 Dongxiang Road, Chang'an District, Xi'an, Shaanxi 710129, PR China. Electronic address:
A novel practical predefined-time sliding mode control strategy is proposed for the flight formation of a small tandem-rotor wheeled UAV (TRW-UAV) with unknown upper bound external disturbances and uncertainties in this paper. Firstly, a new predefined-time sliding mode surface is proposed to guide all errors of the position and velocity loops to converge to the origin in a predefined-time. Furthermore, a dynamic surface control approach is utilized to circumvent the higher-order differentiation when controlling the actuator loop.
View Article and Find Full Text PDFISA Trans
September 2025
School of Astronautics, Harbin Institute of Technology, Harbin, China. Electronic address:
For space missions such as extraterrestrial sample collection, robotic rover exploration, and astronaut landings, the complex terrain and diverse gravitational environments make ground-based micro-low-gravity experimental systems essential for testing and validating spacecraft performance as well as supporting astronaut training. The suspended gravity unloading (SGO) system is a key device commonly used to simulate micro-low-gravity environments. However, the SGO system faces challenges due to model uncertainty and external disturbances, which limit improvements in control accuracy.
View Article and Find Full Text PDFObjective: There are very few studies on the use of a thermomechanical device for reducing injection pain in pediatric dentistry, especially for inferior alveolar nerve blocks (IANBs). The purpose of this study was to assess the efficacy of a thermomechanical device (Buzzy, Pain Care Labs) for reducing pain associated with an IANB for pediatric dental patients.
Methods: A total of 30 children, 5 to 8 years of age undergoing bilateral mandibular dental treatment requiring IANBs, were included in this randomized crossover study.
Am J Reprod Immunol
September 2025
Department of Laboratory Animal Science, Kunming Medical University, Kunming, China.
Objective: To explore B cell infiltration-related genes in endometriosis (EM) and investigate their potential as diagnostic biomarkers.
Methods: Gene expression data from the GSE51981 dataset, containing 77 endometriosis and 34 control samples, were analyzed to detect differentially expressed genes (DEGs). The xCell algorithm was applied to estimate the infiltration levels of 64 immune and stromal cell types, focusing on B cells and naive B cells.