Due to uncontrolled release, gradual accumulation, low degradation rate, and potential negative impact on human health, microplastics (MPs) pose a serious environmental and healthcare risk. Thus, the spread of MPs should be at least carefully monitored to identify and eliminate their main sources, as well as to provide a suitable alarm in the case of MP concentration increase. Among various detection methods, surface-enhanced Raman spectroscopy (SERS) poses a unique detection limit and the ability to perform outdoor measurements without preliminary sample treatment.
View Article and Find Full Text PDFACS Appl Mater Interfaces
June 2025
Plasmon-based triggering leads to an effective increase of material catalytic activity in a number of relevant photoelectrochemical transformations, including nitrogen reduction for the production of ammonia. The efficiency of the plasmon assistance can be significantly increased through the rational design of hybrid photoelectrodes, e.g.
View Article and Find Full Text PDFACS Appl Mater Interfaces
September 2024
Distinct advantages of surface enhanced Raman scattering (SERS) in molecular detection can benefit the enantioselective discrimination of specific molecular configurations. However, many of the recent methods still lack versatility and require customized anchors to chemically interact with the studied analyte. In this work, we propose the utilization of helicoid-shaped chiral gold nanoparticles arranged in an ordered array on a gold grating surface for enantioselective SERS recognition.
View Article and Find Full Text PDFHuman activity is the cause of the continuous and gradual grooving of environmental contaminants, where some released toxic and dangerous compounds cannot be degraded under natural conditions, resulting in a serious safety issue. Among them are the widely occurring water-soluble perfluoroalkyl and polyfluoroalkyl substances (PFAS), sometimes called "forever chemicals" because of the impossibility of their natural degradation. Hence, a reliable, expressive, and simple method should be developed to monitor and eliminate the risks associated with these compounds.
View Article and Find Full Text PDFUnderstanding the function of a biomolecule hinges on its 3D conformation or secondary structure. Chirally sensitive, optically active techniques based on the differential absorption of UV-vis circularly polarized light excel at rapid characterisation of secondary structures. However, Raman spectroscopy, a powerful method for determining the structure of simple molecules, has limited capacity for structural analysis of biomolecules because of intrinsically weak optical activity, necessitating millimolar (mM) sample quantities.
View Article and Find Full Text PDFA heterojunction photo-electrode(s) consisting of porous black titanium oxide (bTiO) and electrochemically self-activated TaS flakes is proposed and utilized for hydrogen evolution reaction (HER). The self-activated TaS flakes provide abundant catalytic sites for HER and the porous bTiO, prepared by electrochemical anodization and subsequent reduction serves as an efficient light absorber, providing electrons for HER. Additionally, Au nanostructures are introduced between bTiO and TaS to facilitate the charge transfer and plasmon-triggering ability of the structure created.
View Article and Find Full Text PDFChempluschem
August 2024
Organic electrochemistry is currently experiencing an era of renaissance, which is closely related to the possibility of carrying out organic transformations under mild conditions, with high selectivity, high yields, and without the use of toxic solvents. Combination of organic electrochemistry with alternative approaches, such as photo-chemistry was found to have great potential due to induced synergy effects. In this work, we propose for the first time utilization of plasmon triggering of enhanced and regio-controlled organic chemical transformation performed in photoelectrochemical regime.
View Article and Find Full Text PDFJ Hazard Mater
July 2024
The widespread consumption of cocaine poses a significant threat to modern society. The most effective way to combat this problem is to control the distribution of cocaine, based on its accurate and sensitive detection. Here, we proposed the detection of cocaine in human blood plasma using a combination of surface enhanced Raman spectroscopy and machine learning (SERS-ML).
View Article and Find Full Text PDFJ Phys Chem C Nanomater Interfaces
April 2024
The properties of MXene flakes, a new class of two-dimensional materials, are strictly determined by their surface termination. The most common termination groups are oxygen-containing (=O or -OH) and fluorine (-F), and their relative ratio is closely related to flake stability and catalytic activity. The surface termination can vary significantly among MXene flakes depending on the preparation route and is commonly determined after flake preparation by using X-ray photoelectron spectroscopy (XPS).
View Article and Find Full Text PDFTransition metal (TM) sulfides belong to the class of 2D materials with a wide application range. Various methods, including solvothermal, hydrothermal, chemical vapor deposition, and quartz ampoule-based approaches, have been employed for the synthesis of TM sulfides. Some of them face limitations due to the low stability of TM sulfides and their susceptibility to oxidation, and others require more sophisticated equipment or complex and rare precursors or are not scalable.
View Article and Find Full Text PDFPolymers (Basel)
February 2024
Many bio-applicable materials, medical devices, and prosthetics combine both polymer and metal components to benefit from their complementary properties. This goal is normally achieved by their mechanical bonding or casting only. Here, we report an alternative easy method for the chemical grafting of a polymer on the surfaces of a metal or metal alloys using alkoxy amine salt as a coupling agent.
View Article and Find Full Text PDFHumidity sensors play a critical role in monitoring human activities, environmental health, food processing and storage, and many other fields. Recently, some 2D materials, particularly MXenes, have been considered as promising candidates for creating humidity sensors because of their high surface area, surface-to-bulk ratio, and excellent conductivity, arising from the high concentration and mobility of free electrons. In this work, we propose the plasmon-assisted surface modification and termination tuning of common MXene (TiCT) to enhance their response to humidity and increase their stability against oxidation.
View Article and Find Full Text PDFAmmonia is one of the most widely produced chemicals worldwide, which is consumed in the fertilizer industry and is also considered an interesting alternative in energy storage. However, common ammonia production is energy-demanding and leads to high CO emissions. Thus, the development of alternative ammonia production methods based on available raw materials (air, for example) and renewable energy sources is highly demanding.
View Article and Find Full Text PDFJ Colloid Interface Sci
October 2023
Here, we report poly(N-isopropylacrylamide-co-acrylic acid) (PNIPAm-co-AAc) microgel-loaded polycaprolactone (PCL) nanofibers as temperature-, pH- and electro-responsive materials. First, the PNIPAm-co-AAc microgels were prepared by precipitation polymerization and then electrospun with PCL. The morphology of the prepared materials, analysed by scanning electron microscopy, showed a narrow nanofiber distribution in the range of 500-800 nm, depending on microgel content.
View Article and Find Full Text PDFACS Appl Mater Interfaces
June 2023
Solely light-induced water splitting represents a promising avenue for a carbon-free energy future, based on reliable energy sources. Such processes can be performed using coupled semiconductor materials (the so-called direct Z-scheme design) that facilitate spatial separation of (photo)excited electrons and holes, prevent their recombination, and allow water-splitting half-reactions proceeding at each corresponding semiconductor side. In this work, we proposed and prepared a specific structure, based on WO/CdWO/CdS coupled semiconductors, created by annealing of a common WO/CdS direct Z-scheme.
View Article and Find Full Text PDFDetection of enantiomers is a challenging problem in drug development as well as environmental and food quality monitoring where traditional optical detection methods suffer from low signals and sensitivity. Application of surface enhanced Raman scattering (SERS) for enantiomeric discrimination is a powerful approach for the analysis of optically active small organic or large biomolecules. In this work, we proposed the coupling of disposable chiral plasmonic shurikens supporting the chiral near-field distribution with SERS active silver nanoclusters for enantio-selective sensing.
View Article and Find Full Text PDFACS Appl Mater Interfaces
February 2023
Among 2D materials, transition-metal dichalcogenides (TMDCs) of group 5 metals recently have attracted substantial interest due to their superior electrocatalytic activity toward hydrogen evolution reaction (HER). However, a straightforward and efficient synthesis of the TMDCs which can be easily scaled up is missing. Herein, we report an innovative, simple, and scalable method for tantalum disulfide (TaS) synthesis, involving CS as a sulfurizing agent and TaO as a metal precursor.
View Article and Find Full Text PDFToday, ultramicrotome cutting is a practical tool, which is frequently applied in the preparation of thin polymeric films. One of the advantages of such a technique is the decrease in surface roughness, which enables an effective recording of further morphological changes of polymeric surfaces during their processing. In view of this, we report on ultramicrotome-cut polymers (PET, PEEK) modified by a KrF excimer laser with simultaneous decoration by AgNPs.
View Article and Find Full Text PDFNanomaterials (Basel)
September 2022
Design and properties of a plasmonic modulator in situ tunable by electric field are presented. Our design comprises the creation of periodic surface pattern on the surface of an elastic polymer supported by a piezo-substrate by excimer laser irradiation and subsequent selective coverage by silver by tilted angle vacuum evaporation. The structure creation was confirmed by AFM and FIB-SEM techniques.
View Article and Find Full Text PDFNanofibers are an attractive option in drug release, especially as antibacterial materials. However, there is no universal antibacterial material and little attention has been devoted to bacteria-nanofiber attachment. Poly(-isopropylacrylamide--acrylamide) is particularly interesting due to its dual thermo- and pH-responsive nature.
View Article and Find Full Text PDFThe enormous development and expansion of antibiotic-resistant bacterial strains impel the intensive search for new methods for fast and reliable detection of antibiotic susceptibility markers. Here, we combined DNA-targeted surface functionalization, surface-enhanced Raman spectroscopy (SERS) measurements, and subsequent spectra processing by decision system (DS) for detection of a specific oligonucleotide (ODN) sequence identical to a fragment of blaNDM-1 gene, responsible for β-lactam antibiotic resistance. The SERS signal was measured on plasmonic gold grating, functionalized with capture ODN, ensuring the binding of corresponded ODNs.
View Article and Find Full Text PDFNanomaterials (Basel)
November 2021
Bacterial environmental colonization and subsequent biofilm formation on surfaces represents a significant and alarming problem in various fields, ranging from contamination of medical devices up to safe food packaging. Therefore, the development of surfaces resistant to bacterial colonization is a challenging and actively solved task. In this field, the current promising direction is the design and creation of nanostructured smart surfaces with on-demand activated amicrobial protection.
View Article and Find Full Text PDFACS Appl Mater Interfaces
October 2021
Supercapacitors based on nonresponsive polymer hydrogels are gaining significant attention due to their fabrication simplicity and high potential for wearable electronics. However, the use of smart hydrogels in supercapacitor design remains unexplored. In this work, a smart externally controlled supercapacitor based on a temperature-responsive hydrogel doped with polypyrrole nanotubes (PPyNTs) is proposed.
View Article and Find Full Text PDFPlasmon assistance promotes a range of chemical transformations by decreasing their activation energies. In a common case, thermal and plasmon assistance work synergistically: higher temperature results in higher plasmon-enhanced catalysis efficiency. Herein, we report an unexpected tenfold increase in the reaction efficiency of surface plasmon-assisted Huisgen dipolar azide-alkyne cycloaddition (AAC) when the reaction mixture is cooled from room temperature to -35 °C.
View Article and Find Full Text PDF