98%
921
2 minutes
20
G protein-coupled receptors (GPCRs) are the largest single family of cell surface receptors encoded by the human genome and they play pivotal roles in co-ordinating cellular systems throughout the human body, making them ideal drug targets. Structural biology has played a key role in defining how receptors are activated and signal through G proteins and β-arrestins. The application of structure-based drug design (SBDD) is now yielding novel compounds targeting GPCRs. There is thus significant interest from both academia and the pharmaceutical industry in the structural biology of GPCRs as currently only about one quarter of human non-odorant receptors have had their structure determined. Initially, all the structures were determined by X-ray crystallography, but recent advances in electron cryo-microscopy (cryo-EM) now make GPCRs tractable targets for single-particle cryo-EM with comparable resolution to X-ray crystallography. So far this year, 78% of the 99 GPCR structures deposited in the PDB (Jan-Jul 2021) were determined by cryo-EM. Cryo-EM has also opened up new possibilities in GPCR structural biology, such as determining structures of GPCRs embedded in a lipid nanodisc and multiple GPCR conformations from a single preparation. However, X-ray crystallography still has a number of advantages, particularly in the speed of determining many structures of the same receptor bound to different ligands, an essential prerequisite for effective SBDD. We will discuss the relative merits of cryo-EM and X-ray crystallography for the structure determination of GPCRs and the future potential of both techniques.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8589417 | PMC |
http://dx.doi.org/10.1042/BST20210431 | DOI Listing |
J Med Chem
September 2025
State Key Laboratory of Bioactive Molecules and Druggability Assessment, Guangdong Basic Research Center of Excellence for Natural Bioactive Molecules and Discovery of Innovative Drugs, International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Discovery o
Aberrant activation of fibroblast growth factor receptors (FGFRs) plays a critical role in tumorigenesis across multiple cancer types, driving the development of various FGFR inhibitors. Despite clinical advances, therapeutic efficacy remains limited by the emergence of drug resistance, primarily mediated by gatekeeper mutations in FGFRs. To overcome this challenge, we designed and synthesized a novel series of 7-(1-methyl-1-indole-3-yl)-5-pyrrolo[2,3-]pyrazine derivatives as covalent pan-FGFR inhibitors targeting both wild-type and gatekeeper mutants.
View Article and Find Full Text PDFInorg Chem
September 2025
Jiangxi Provincial Key Laboratory of Functional Crystalline Materials Chemistry, School of Chemistry and Chemical Engineering, Jiangxi University of Science and Technology, Ganzhou 341000, People's Republic of China.
The selection of hydrogen-bonding donors is crucial for the development of stimuli-responsive luminescent materials that rely on weak hydrogen-bonding interactions. In this study, we report two novel dinuclear Cu(I) complexes, [Cu(μ-η(,),η(,)-dpa)(μ-dppm)](ClO) () and [Cu(μ-η(,),η(,)-dpa)(μ-dppa)](ClO)·2CHCOCH (), which differ in their diphosphine linkers (CH in dppm vs NH in dppa). X-ray crystallography reveals weak CH···O hydrogen bonds between dppm-CH and perchlorate-O in and weak NH···O interactions between dppa-NH and acetone-O in .
View Article and Find Full Text PDFHuman sirtuin 2 (SIRT2) is an NAD dependant enzyme that has been linked to the pathogenesis of various diseases, making it a promising target for pharmaceutical intervention. This study presents a systematic investigation on the inhibitory effects of SIRT2 inhibitors functionalized with diverse electrophilic functional groups. Guided by initial docking studies, we designed and synthesised 14 derivatives of two published potent lead structures 24a and SirReal2.
View Article and Find Full Text PDFFEBS J
September 2025
Neutron Scattering Division, Oak Ridge National Laboratory, USA.
Serine hydroxymethyltransferase (SHMT) is a critical enzyme in the one-carbon (1C) metabolism pathway catalyzing the reversible conversion of L-Ser into Gly and concurrent transfer of 1C unit to tetrahydrofolate (THF) to give 5,10-methylene-THF (5,10-MTHF), which is used in the downstream syntheses of biomolecules critical for cell proliferation. The cellular 1C metabolism is hijacked by many cancer types to support cancer cell proliferation, making SHMT a promising target for the design and development of novel small-molecule antimetabolite chemotherapies. To advance structure-assisted drug design, knowledge of SHMT catalysis is crucial, but can only be fully realized when the atomic details of each reaction step governed by the acid-base catalysis are elucidated by visualizing active site hydrogen atoms.
View Article and Find Full Text PDFPhytochemistry
September 2025
State Key Laboratory Basis of Xinjiang Indigenous Medicinal Plants Resource Utilization, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi, 830011, People's Republic of China; University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of Ch
Six undescribed sesquiterpene esters, euphoresulins A-F, along with fourteen known daucane analogues were isolated from the aerial parts of Euphorbia esula growing in Uzbekistan. Their structures were determined on the basis of extensive spectroscopic analyses, with absolute configurations established by comparison of experimental and calculated ECD data, in addition to single-crystal X-ray diffraction crystallography. Euphoresulins A-F (1-6) presented sesquiterpene ester types of daucane for euphoresulins A-D (1-4) and aromadendrane for euphoresulins E-F (5-6).
View Article and Find Full Text PDF