98%
921
2 minutes
20
From the beginning of research on serial memory, chaining theories and position coding theories have been pitted against each other. The central question is whether items are associated with each other or with a set of position codes that are independent of the items. Around the turn of this century, the debate focused on serial recall tasks and patterns of error data that chaining models could not accommodate. Consequently, theories based on other ideas flourished and position coding models became prominent. We present an analysis of a retrieved context model that integrates chains and position codes. Under some parameter values, it produces classic chains. Under most parameter values, it produces context representations that contain information sufficient to specify the position codes in position coding theories. We suggest three ways to extract position codes from context representations and show the codes they produce are mathematically equivalent to the codes in position coding models. The extracted position codes can be substituted for the position codes in position coding models and run through their machinery to mimic their predictions exactly. We suggest that chains, position codes, and retrieved contexts may reflect different strategies for extracting desired information from a common set of memory representations, and we emphasize the value of considering item-dependent context representations that are made from fading traces of past items encoded or retrieved. (PsycInfo Database Record (c) 2021 APA, all rights reserved).
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1037/rev0000327 | DOI Listing |
Mutat Res Rev Mutat Res
September 2025
Institute of Environmental Medicine, Zhejiang University School of Medicine, Hangzhou 310058, China. Electronic address:
To maintain genomic stability, cells have evolved complex mechanisms collectively known as the DNA damage response (DDR), which includes DNA repair, cell cycle checkpoints, apoptosis, and gene expression regulation. Recent studies have revealed that long non-coding RNAs (lncRNAs) are pivotal regulators of the DDR. Beyond their established roles in recruiting repair proteins and modulating gene expression, emerging evidence highlights two particularly intriguing functions.
View Article and Find Full Text PDFPlanta
September 2025
Department of Biology, University of Naples Federico II, Via Cinthia 26, 80126, Naples, Italy.
The first complete plastid genome of the critically endangered species Valeriana trinervis was sequenced, assembled and compared with other published Valeriana plastomes. In this study, we assembled the plastid genome of the critically endangered, endemic species Valeriana trinervis (= Centranthus trinervis) and compare it with all published plastomes of Valeriana. We found not only differences in the inverted repeats boundaries, in the type and abundance of repeats, but also similarities in codon usage and microsatellite numbers.
View Article and Find Full Text PDFOpen Biol
September 2025
National Brain Research Centre, Manesar, Haryana, India.
E3 ubiquitin ligases regulate the cellular proteome proteasome-dependent protein degradation; however, there exist limited studies outlining their non-canonical functions. RNA-binding ubiquitin ligases (RBULs) represent a subset of E3 ligases that harbour RNA-binding domains, making them uniquely positioned to function as both RNA-binding proteins and E3 ligases. Our initial microarray screen for E3 ligases from mouse cortical neural progenitor cells identified MEX3B, a known RNA-binding ubiquitin ligase, to be differentially expressed.
View Article and Find Full Text PDFInt J Biol Macromol
September 2025
School of Life Sciences, Anhui Medical University, Hefei, 230032, China; Translational Research Institute of Henan Provincial People's Hospital, Henan International Joint Laboratory of Non-coding RNA and Metabolism in Cancer, Henan Provincial Key Laboratory of Long Non-coding RNA and Cancer Metaboli
Melanoma is the most aggressive and lethal form of skin cancer, posing significant challenges for prognosis assessment and treatment. Recently, metabolic reprogramming and epigenetic regulation have gained attention for their roles in cancer progression. The role of the key metabolic enzyme dihydrolipoic acid succinyltransferase (DLST) in cancer is currently unclear.
View Article and Find Full Text PDFMol Biol Rep
September 2025
ICAR-Central Institute of Fisheries Education, Versova, Mumbai, 400061, India.
Background: Labeo fimbriatus (Bloch, 1795) is a medium-sized South Asian minor carp with ecological significance and emerging aquaculture potential, particularly in polyculture systems with Indian major carps. Despite its wide distribution, it remains underrepresented in phylogenetic studies, and limited genomic resources are available. Here, we report the complete mitochondrial genome sequence of L.
View Article and Find Full Text PDF