Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Significantly reduced levels of the anti-inflammatory gaseous transmitter hydrogen sulfide (HS) are observed in diabetic patients and correlate with microvascular dysfunction. HS may protect the microvasculature by preventing loss of the endothelial glycocalyx. We tested the hypothesis that HS could prevent or treat retinal microvascular endothelial dysfunction in diabetes. Bovine retinal endothelial cells (BRECs) were exposed to normal (NG, 5.5 mmol/L) or high glucose (HG, 25 mmol/L) ± the slow-release HS donor NaGYY4137 . Glycocalyx coverage (stained with WGA-FITC) and calcein-labeled monocyte adherence were measured. , fundus fluorescein angiography (FFA) was performed in normal and streptozotocin-induced (STZ) diabetic rats. Animals received intraocular injection of NaGYY4137 (1 μM) or the mitochondrial-targeted HS donor AP39 (100 nM) simultaneously with STZ (prevention) or on day 6 after STZ (treatment), and the ratio of interstitial to vascular fluorescence was used to estimate apparent permeability. NaGYY4137 prevented HG-induced loss of BREC glycocalyx, increased monocyte binding to BRECs ( ≤ 0.001), and increased overall glycocalyx coverage ( ≤ 0.001). In rats, the STZ-induced increase in apparent retinal vascular permeability ( ≤ 0.01) was significantly prevented by pre-treatment with NaGYY4137 and AP39 ( < 0.05) and stabilized by their post-STZ administration. NaGYY4137 also reduced the number of acellular capillaries (collagen IV + /IB4-) in the diabetic retina in both groups ( ≤ 0.05). We conclude that NaGYY4137 and AP39 protected the retinal glycocalyx and endothelial permeability barrier from diabetes-associated loss of integrity and reduced the progression of diabetic retinopathy (DR). Hydrogen sulfide donors that target the glycocalyx may therefore be a therapeutic candidate for DR.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8452977PMC
http://dx.doi.org/10.3389/fcell.2021.724905DOI Listing

Publication Analysis

Top Keywords

hydrogen sulfide
12
retinal glycocalyx
8
glycocalyx endothelial
8
endothelial permeability
8
permeability barrier
8
glycocalyx coverage
8
≤ 0001
8
nagyy4137 ap39
8
glycocalyx
7
nagyy4137
6

Similar Publications

Mitochondria-targeted NIR fluorescent probe for detection of hydrogen sulfide and its application in monitoring food freshness and bioimaging.

Anal Chim Acta

November 2025

Jiangxi Provincial Key Laboratory of Organic Functional Molecules, Institute of Organic Chemistry, Jiangxi Science and Technology Normal University, Nanchang, 330013, PR China; Department of Ecology and Environment, Yuzhang Normal University, Nanchang, 330103, PR China. Electronic address: pushouzhi

Background: The hydrogen sulfide (HS) in spoilage of raw meat poses significant food safety risks to human health. Meanwhile, as a signaling molecule, HS is crucial for maintaining human physiological homeostasis. Thus, the establishment of an efficient method for HS detection is essential for safeguarding human health.

View Article and Find Full Text PDF

Role of hydrogen sulfide in catalyzing the formation of NO-ferroheme.

Nitric Oxide

September 2025

Department of Physics, Wake Forest University, Winston-Salem, NC 27109, USA; Translational Science Center, Wake Forest University, Winston-Salem, NC 27109, USA. Electronic address:

We recently demonstrated a rapid reaction between labile ferric heme and nitric oxide (NO) in the presence of reduced glutathione (GSH) or other small thiols in a process called thiol-catalyzed reductive nitrosylation, yielding a novel signaling molecule, labile nitrosyl ferrous heme (NO-ferroheme), which we and others have shown can regulate vasodilation and platelet homeostasis. Red blood cells (RBCs) contain high concentrations of GSH, and NO can be generated in the RBC via nitrite reduction and/or RBC endothelial nitric oxide synthase (eNOS) so that NO-ferroheme could, in principle, be formed in the RBC. NO-ferroheme may also form in other cells and compartments, including in plasma, where another small and reactive thiol species, hydrogen sulfide (HS/HS), is also present and may catalyze NO-ferroheme formation akin to GSH.

View Article and Find Full Text PDF

While fluorene-containing materials are widely used in organic optoelectronics as bright emitters and hole semiconductors, their diazafluorene analogues have been poorly explored, though their nitrogen atoms could result in electron transport and bring sensory abilities. Here, we report the synthesis, characterization, and detailed study of a series of 4,5-diazafluorene-derivatives with different donor/acceptor substituents and organic semiconductors based on these molecules. The crystal structures of all the materials were solved by X-ray diffraction, indicating the presence of extensive π-stacking and anisotropic charge-transfer pathways.

View Article and Find Full Text PDF

Copper-Modified Nanocarbon Composites for Enhanced Hydrogen Sulfide Adsorption: Synergistic Effects of Persistent Free Radicals and Cu-Based Oxides.

Langmuir

September 2025

Key Laboratory of Green Chemical Engineering and Technology of College of Heilongjiang Province, School of Materials Science and Chemical Engineering, Harbin University of Science and Technology, Harbin 150080, P. R. China.

In this study, copper-modified nanocarbon composites (OMC) were successfully prepared using two-dimensional carbon nanosheets as the material substrate, the low-temperature hydrothermal method as the main process, and copper nitrate as the modifier. The effects of the modifier dosage ratio, hydrothermal temperature, and residence time on the structure and hydrogen sulfide (HS) adsorption performance of OMC were investigated. The results show that the OMC with persistent free radicals and copper oxides prepared under the conditions of a mass ratio of copper nitrate to two-dimensional carbon nanosheets of 2, a hydrothermal temperature of 130 °C, and a time of 8 h, respectively, has the best adsorption performance for HS, with an adsorption sulfur capacity of up to 46.

View Article and Find Full Text PDF

Hydrogen sulfide (HS) is a respiratory poison and also a product of our own metabolism. The toxicity of HS is mitigated by the activity of mitochondrial sulfide quinone oxidoreductase (SQOR), which oxidizes HS while concomitantly reducing coenzyme Q. An unusual cysteine trisulfide cofactor distinguishes SQOR from other members of the flavin disulfide reductase superfamily.

View Article and Find Full Text PDF