Detection of Protein -nitrosothiols (SNOs) in Plant Samples on Diaminofluorescein (DAF) Gels.

Bio Protoc

Department of Biochemistry, Cell and Molecular Biology of Plants, Estación Experimental del Zaidín, Spanish National Research Council (CSIC), C/Profesor Albareda, Granada, Spain.

Published: September 2017


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

In plant cells, the analysis of protein -nitrosothiols (SNOs) under physiological and adverse stress conditions is essential to understand the mechanisms of Nitric oxide (NO)-based signaling. We adapted a previously reported protocol for detecting protein SNOs in animal systems ( King , 2005 ) for plant samples. Briefly, proteins from plant samples are separated via non-reducing SDS-PAGE, then the NO bound by -nitrosylated proteins is released using UV light and, finally, the NO is detected using the fluorescent probe DAF-FM (Rodriguez-Ruiz , 2017). Thus, the approach presented here provides a relatively quick and economical procedure that can be used to compare protein SNOs content in plant samples and provide insight in NO-based signaling in plants.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8413620PMC
http://dx.doi.org/10.21769/BioProtoc.2559DOI Listing

Publication Analysis

Top Keywords

plant samples
16
protein -nitrosothiols
8
-nitrosothiols snos
8
no-based signaling
8
protein snos
8
plant
5
detection protein
4
snos
4
snos plant
4
samples
4

Similar Publications

Sweet potato foot rot disease caused by Diaporthe destruens (formerly Plenodomus destruens) severely affects the yield and quality of sweet potatoes. To gain basic knowledge on regulating the pathogen using indigenous soil bacteria, the following organic materials were applied to potted soils collected from a sweet potato field contaminated with D. destruens: Kuroihitomi (compost made from shochu waste and chicken manure), Soil-fine (material made by adsorbing shochu waste on rice bran), and rice bran.

View Article and Find Full Text PDF

Background: Water contamination is a global challenge, primarily due to heavy metal ions like lead (Pb), iron (Fe), cadmium (Cd), andmercury (Hg) as well as dyes. These pollutants enter the ecosystem from industrial waste and runoff, accumulate in the environment and pose a high risk to humans, animals and plants. Various sensors, such as colorimetric sensors, and electrochemical sensors have been developed to detect these ions and dyes.

View Article and Find Full Text PDF

Homologous nanocellulose modification: A "like cures like" strategy against coffee-ring and infiltration effects in paper-based colorimetric detection.

Anal Chim Acta

November 2025

NHC Key Laboratory of Tropical Disease Control, School of Tropical Medicine, Hainan Medical University, Haikou, Hainan, 571199, China. Electronic address:

Background: While paper-based colorimetric assays have seen significant progress in recent years, persistent challenges including the coffee-ring effect and infiltration effect continue to affect the color uniformity of detection results, leading to decreased sensitivity and accuracy of the detection. Recent advancements in suppressing these two effects mainly depend on chemical modification of cellulose fibers or application of specific functional coatings. However, the former's complex procedures impede large-scale implementation, while the latter's non-cellulosic additives risk unpredictable interactions with analytes or interference in colorimetric reactions.

View Article and Find Full Text PDF

Simultaneous determination of Sr and Pu isotopes in marine biological samples.

Anal Chim Acta

November 2025

State Key Laboratory of Loess Science, Shaanxi Key Laboratory of AMS Technology and Application, Xi'an AMS Center, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an, 710061, China. Electronic address:

Pu and Sr are highly important radionuclides in the environment, which can accumulate in the human body through the food chain and cause radiation exposure. With the continuous discharge of treated nuclear contamination water from the Fukushima Daiichi nuclear power plant, it is crucial to investigate and monitor the levels of Pu and Sr in seafood. However, it is still a challenge to determine Pu and Sr in seafood at environmental levels, owing to their extremely low concentrations, labor-intensive and time-consuming pre-treatment for large-sized samples.

View Article and Find Full Text PDF

Upconverting nano-paste in 3D-printed phone camera setup for soil phyto-iron sensing.

Anal Chim Acta

November 2025

Institute of Nano Science and Technology, Knowledge City, Sahibzada Ajit Singh Nagar, Sector- 81, Punjab, 140306, India. Electronic address:

Background: Iron (Fe) is an essential micronutrient for plant growth, but the conventional DTPA soil analysis method for detecting available iron has notable limitations, requiring advanced instruments and lengthy preparation time. Developing a more affordable, user-friendly, and efficient method for iron detection in soil could greatly improve crop nutrition management. Here, a facile nanoscopic method was developed to quantify available Fe ions in the soil by forming a luminescence quenching complex in chelation with bathophenanthroline disulphonic acid disodium salt (Fe/BPDS complex).

View Article and Find Full Text PDF