98%
921
2 minutes
20
Background: To create an ideotype woody bioenergy crop with desirable growth and biomass properties, we utilized the viral 2A-meidated bicistronic expression strategy to express both PtrMYB3 (MYB46 ortholog of Populus trichocarpa, a master regulator of secondary wall biosynthesis) and PdGA20ox1 (a GA20-oxidase from Pinus densiflora that produces gibberellins) in wood-forming tissue (i.e., developing xylem).
Results: Transgenic Arabidopsis plants expressing the gene construct DX15::PdGA20ox1-2A-PtrMYB3 showed a significant increase in both stem fresh weight (threefold) and secondary wall thickening (1.27-fold) relative to wild-type (WT) plants. Transgenic poplars harboring the same gene construct grown in a greenhouse for 60 days had a stem fresh weight up to 2.6-fold greater than that of WT plants. In a living modified organism (LMO) field test conducted for 3 months of active growing season, the stem height and diameter growth of the transgenic poplars were 1.7- and 1.6-fold higher than those of WT plants, respectively, with minimal adverse growth defects. Although no significant changes in secondary wall thickening of the stem tissue of the transgenic poplars were observed, cellulose content was increased up to 14.4 wt% compared to WT, resulting in improved saccharification efficiency of the transgenic poplars. Moreover, enhanced woody biomass production by the transgenic poplars was further validated by re-planting in the same LMO field for additional two growing seasons.
Conclusions: Taken together, these results show considerably enhanced wood formation of our transgenic poplars, with improved wood quality for biofuel production.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8425128 | PMC |
http://dx.doi.org/10.1186/s13068-021-02029-2 | DOI Listing |
Plant Cell Environ
September 2025
State Key Laboratory of Tree Genetics and Breeding, Co-Innovation Center for Sustainable Forestry in Southern China, Bamboo Research Institute, Key Laboratory of National Forestry and Grassland Administration on Subtropical Forest Biodiversity Conservation, School of Life Sciences, Nanjing Forestry
CRISPR ribonucleoprotein (RNP)-mediated genome editing offers a transgene-free platform for precise genetic modification in diverse herbaceous and tree species, including rice, wheat, apple, poplar, oil palm, rubber tree and grapevine. However, its application in woody plants faces distinct challenges, notably inefficient delivery and regeneration difficulties, particularly in species such as bamboo. While some of these issues also occur in herbaceous plants, they are often significantly more complex in woody species due to factors such as intricate cell wall architecture, widespread recalcitrant genotypes and inherent limitations of current delivery platforms.
View Article and Find Full Text PDFNew Phytol
September 2025
Peking University Institute of Advanced Agricultural Sciences, Weifang, Shandong, 261325, China.
The microRNA169 (miR169) family and NF-YA transcription factors (TFs) are crucial for drought stress responses. However, the mechanisms by which these factors regulate reactive oxygen species (ROS) homeostasis under drought conditions remain inadequately characterized in Populus. Here, we identified an NF-YA TF, PagNF-YA5, from hybrid poplar 84 K (Populus alba × Populus glandulosa).
View Article and Find Full Text PDFPlant Sci
August 2025
Key Laboratory of Forest and Flower Genetics and Breeding of Ministry of Education, College of Biological Science and Biotechnology, Beijing Forestry University, Beijing 100083, China. Electronic address:
Populus euphratica glycine-rich RNA-binding protein 2 (PeGRP2) has been previously shown to destabilize target mRNAs and negatively regulates salt tolerance of poplar. This study aimed to explore the post-translational regulation of PeGRP2 in the salt-resistant poplar. PeGRP2 was demonstrated to interact with more axillary growth 2 (PeMAX2), an F-box leucine-rich repeat protein.
View Article and Find Full Text PDFPlants (Basel)
August 2025
Forest Tree Genetics and Breeding Laboratory, College of Forestry, Hebei Agricultural University, Baoding 071001, China.
With the increasing severity of forest pest problems, breeding insect-resistant varieties has become a crucial task for the sustainable development of forestry. The highly insect-resistant triploid Populus line Pb29, genetically modified with , served as the maternal parent in controlled hybridization with three paternal Populus cultivars. Hybrid progenies were obtained through embryo rescue and tissue culture.
View Article and Find Full Text PDFPlant Sci
August 2025
State Key Laboratory of Tea Plant Germplasm Innovation and Resource Utilization, Anhui Agricultural University, Anhui, Hefei 230036, China. Electronic address:
Members of the HAK/KUP/KT family play crucial roles in potassium (K⁺) uptake, transport, and abiotic stress responses. However, their functions in woody plants remain poorly characterized. Here, we identified CsHAK4, a root-specific K⁺ transporter gene in tea plant (Camellia sinensis L.
View Article and Find Full Text PDF