Epigenetic Deregulation of the Histone Methyltransferase Contributes to Malignant Transformation in Glioblastoma.

Front Cell Dev Biol

Cancer Epigenetics and Nanomedicine Laboratory, Department of Organisms and Systems Biology, Nanomaterials and Nanotechnology Research Center (CINN-CSIC), Health Research Institute of Asturias (ISPA), Institute of Oncology of Asturias (IUOPA), Rare Diseases CIBER (CIBERER) of the Carlos III Health I

Published: August 2021


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Glioblastoma multiforme (GBM) is the most common and aggressive type of brain tumor in adulthood. Epigenetic mechanisms are known to play a key role in GBM although the involvement of histone methyltransferase and its mark H4K20me2 has remained largely unexplored. The present study shows that DNA hypermethylation and loss of DNA hydroxymethylation is associated with downregulation and genome-wide reduction of H4K20me2 levels in a set of human GBM samples and cell lines as compared with non-tumoral specimens. Ectopic overexpression of induced tumor suppressor-like features and in a mouse tumor xenograft model, as well as changes in the expression of several glioblastoma-related genes. H4K20me2 enrichment was found immediately upstream of the promoter regions of a subset of deregulated genes, thus suggesting a possible role for in GBM through the epigenetic modulation of key target cancer genes.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8383299PMC
http://dx.doi.org/10.3389/fcell.2021.671838DOI Listing

Publication Analysis

Top Keywords

histone methyltransferase
8
role gbm
8
epigenetic deregulation
4
deregulation histone
4
methyltransferase contributes
4
contributes malignant
4
malignant transformation
4
transformation glioblastoma
4
glioblastoma glioblastoma
4
glioblastoma multiforme
4

Similar Publications

Histone methylation of kidney disease: fact or fantasy?

Ren Fail

December 2025

Department of Nephrology, The First Affiliated Hospital, Anhui University of Chinese Medicine, Hefei, China.

Histone methylation (HMT), the enzymatic addition of methyl groups to specific histone residues by histone methyltransferases, constitutes a key regulatory mechanism in gene expression and post-translational modulation. Although studies have explored HMT's role in oncogenesis and other organ-specific disorders, HMT is now implicated in the pathogenesis of kidney diseases. A broad spectrum of experimental models, including both and systems, has demonstrated the involvement of HMT alterations in diverse renal pathologies such as acute kidney injury, renal fibrosis, diabetic nephropathy, lupus nephritis, polycystic kidney disease, kidney stones, renal cell carcinoma, and immunoglobulin A nephropathy.

View Article and Find Full Text PDF

Discovery of novel indazole derivatives as type Ⅰ PRMTs inhibitors for the treatment of triple-negative breast cancer.

Eur J Med Chem

September 2025

School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, PR China; Yibin Institute of Southwest Jiaotong University, Yibin, Sichuan, PR China. Electronic address:

Type I protein arginine methyltransferases (PRMTs) play significant roles in various diseases, including cancer. The inhibition of type I PRMTs significantly suppresses the growth of breast cancer, particularly triple-negative breast cancer (TNBC). The development of potent and selective type I PRMTs inhibitors has become a research hotspot in recent years.

View Article and Find Full Text PDF

Research status of small molecule inhibitors, probes, and degraders of NSDs: a comprehensive review.

Future Med Chem

September 2025

Institute of Bioinformatics and Medical Engineering, School of Electrical and Information Engineering, Jiangsu University of Technology, Changzhou, P.R. China.

The nuclear receptor binding SET domain (NSD) family of histone methyltransferases, which comprised NSD1, NSD2, and NSD3. They play a pivotal role in catalyzing mono- and dimethylation of histone H3 at lysine 36 (H3K36me1/2), a modification critical for maintaining chromatin structure and transcriptional fidelity. Dysregulation of NSD enzymes, often through overexpression, mutation, or chromosomal translocation, has been implicated in a broad spectrum of malignancies and various diseases.

View Article and Find Full Text PDF

Background: Alcohol use disorder (AUD) is a pervasive problem in society afflicting millions of people worldwide. One reason for the prevalence of AUD is that heavy alcohol drinking can produce alcohol dependence. In addition, alcohol dependence dysregulates the body's stress systems to increase alcohol drinking.

View Article and Find Full Text PDF

Transcriptional condensates enrich phosphorylated PRMT2 to stimulate H3R8me2a deposition and hypoxic response in glioblastoma.

Sci China Life Sci

September 2025

State Key Laboratory of Experimental Hematology, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Medical University Cancer Institute and Hospital, Tianjin Key Labora

Histone arginine methylation by protein arginine methyltransferases (PRMTs) is crucial for transcriptional regulation and is implicated in cancers. Despite their therapeutic potential, some PRMTs present challenges as drug targets due to their context-dependent activities. Here, we demonstrate that hypoxia triggers the rapid condensation of PRMT2, which is essential for its histone H3R8 asymmetric dimethylation (H3R8me2a) activity.

View Article and Find Full Text PDF