Short-Term Effect of Temperature Change on Non-Accidental Mortality in Shenzhen, China.

Int J Environ Res Public Health

Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Rd, Wuhan 430030, China.

Published: August 2021


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Temperature change is an important meteorological indicator reflecting weather stability. This study aimed to examine the effects of ambient temperature change on non-accidental mortality using diurnal temperature change (DTR) and temperature change between neighboring days (TCN) from two perspectives, intra-day and inter-day temperature change, and further, to explore seasonal variations of mortality, identify the susceptible population and investigate the interaction between temperature change and apparent temperature (AT). We collected daily data on cause-specific mortality, air pollutants and meteorological indicators in Shenzhen, China, from 1 January 2013 to 29 December 2017. A Quasi-Poisson generalized linear regression combined with distributed lag non-linear models (DLNMs) were conducted to estimate the effects of season on temperature change-related mortality. In addition, a non-parametric bivariate response surface model was used to explore the interaction between temperature change and AT. The cumulative effect of DTR was a U-shaped curve for non-accidental mortality, whereas the curve for TCN was nearly monotonic. The overall relative risks (RRs) of non-accidental, cardiovascular and respiratory mortality were 1.407 (95% CI: 1.233-1.606), 1.470 (95% CI: 1.220-1.771) and 1.741 (95% CI: 1.157-2.620) from exposure to extreme large DTR (99th) in cold seasons. However, no statistically significant effects were observed in warm seasons. As for TCN, the effects were higher in cold seasons than warm seasons, with the largest RR of 1.611 (95% CI: 1.384-1.876). The elderly and females were more sensitive, and low apparent temperature had a higher effect on temperature change-related non-accidental mortality. Temperature change was positively correlated with an increased risk of non-accidental mortality in Shenzhen. Both female and elderly people are more vulnerable to the potential adverse effects, especially in cold seasons. Low AT may enhance the effects of temperature change.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8392083PMC
http://dx.doi.org/10.3390/ijerph18168760DOI Listing

Publication Analysis

Top Keywords

temperature change
40
non-accidental mortality
20
temperature
13
cold seasons
12
change
10
mortality
9
change non-accidental
8
mortality shenzhen
8
shenzhen china
8
interaction temperature
8

Similar Publications

Wetlands and their aquatic arthropods are threatened by climate change (temperature, precipitation). In this review, we first synthesize the literature on environmental controls on wetland arthropods (hydroperiod, temperature, dissolved oxygen) and then assess how these controls operate across freshwater wetlands from different global biomes (tropical/subtropical, temperate, high latitude/altitude, and dry climates) and how changes in climates alter arthropod fauna with consequent modifications to wetland ecosystem functions (decomposition, food web dynamics). We also describe ways to develop bioassessment of climate change impacts on wetlands.

View Article and Find Full Text PDF

The Essence of Nature Can be the Simplest (6)-Lifespan: Determined by Extracellular Fenton Chemistry.

Chem Biodivers

September 2025

State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan & Yunnan Key Laboratory of Basic Research and Innovative Application for Green Biological Production, Key Laboratory for Microbial Resources of the Ministry of Education, School of Life Sciences, Yunnan University, Kunm

Understanding the determinants of lifespan is a central objective in biology. Lifespan is shaped by dynamic, stage-specific changes in metabolism, energy allocation, and genome integrity. Heart rate serves as a physiological marker that reflects both life stage and metabolic state.

View Article and Find Full Text PDF

During brewing processes, proteins such as lipid transfer protein 1 (LTP1) are exposed to high temperatures, which later affects the beer foam properties. To develop high-quality beer, it is therefore essential to understand the protein chemical modifications and structural alternations induced by the high temperatures and their impact on beer foam. This study characterizes heat-induced chemical modifications and changes in the molecular size distribution and structure of LTP1 and its lipid-bound isoform, LTP1b, using size-exclusion chromatography and reverse-phase chromatography/mass spectrometry.

View Article and Find Full Text PDF

Physicochemical, microbiological, and microstructural changes in germinated wheat grain.

PLoS One

September 2025

Department of Science, LLP "Research and Production Enterprise "Innovator", Astana, Kazakhstan.

This study investigates the physicochemical, microbiological, and microstructural changes in soft wheat grain during germination under varying moisture conditions: moderately dry, moist, and wet. Pre-harvest sprouting can severely compromise grain quality and usability; however, understanding germination-induced changes offers insights into potential utilization strategies. Physical parameters-including thousand-kernel weight, test weight, and falling number-showed strong correlation with germination time, decreasing by 8.

View Article and Find Full Text PDF

Sea surface temperature of the Red Sea has increased by up to 0.45 °C per decade over the last 30 years, and coral bleaching events are becoming more frequent. A reef bleaching event was observed in October 2020, whereby some parts of the Red Sea experienced more than 12 °C-weeks.

View Article and Find Full Text PDF