Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Attention-deficit hyperactivity disorder (ADHD) seriously affects children's health, and the gut microbiome has been widely hypothesized to play a role in the regulation of ADHD behavior. The present study aims to the biosynthesize of zinc oxide nanoparticles (ZnONPs) by using strain RTN1, followed by their characterization through state-of-the-art material characterization techniques, viz., UV-vis spectroscopy, Fourier transform infrared spectroscopy, and transmission and scanning electron microscopic analyses with energy dispersive spectrometry. Moreover, we investigated and compared the population composition of gut microbiota and their susceptibility to biogenic ZnONPs between healthy and ADHD children based on the traditional plate method and 16S rRNA amplicon sequence analysis. The antibacterial effect of ZnONPs against gut bacteria was also determined by measurement of live cell number, living/dead bacterial staining test, and flow cytometry observation. The present study revealed that the number of live gut bacteria in healthy children was more than 10-fold higher than that in ADHD children; however, the community structure of gut bacteria has changed, while greater diversity was found in gut bacteria from ADHD children. In addition, we found that the number of live gut bacteria in healthy and ADHD children was reduced by ZnONPs, which shows an increased and reduced effect in composition of gut bacteria from healthy and ADHD children, respectively. It was also noted that the main mechanism of ZnONPs may be to inhibit the growth of gut bacteria rather than to kill them, while the nanoparticle-resistant strains in healthy children is also different from that in ADHD children. Some representative bacteria, in particular nanoparticle-resistant bacteria, were successfully isolated and identified. Overall, this study revealed the potential correlation of ADHD with gut bacteria and provided a new possibility to prevent ADHD by the combination of nanoparticle and its resistant bacteria.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8375032PMC
http://dx.doi.org/10.3389/fmicb.2021.700707DOI Listing

Publication Analysis

Top Keywords

gut bacteria
32
adhd children
24
composition gut
12
healthy adhd
12
bacteria healthy
12
gut
11
bacteria
11
adhd
10
children
9
zinc oxide
8

Similar Publications

Probiotics are live beneficial microorganisms that confer health benefits to the host when administered in adequate amounts, have gained considerable scientific and commercial interest for their ability to support gut health, strengthen immunity, and reduce disease risk. This review traces the genesis of probiotic science from its origins in traditional fermented foods to contemporary clinical applications, offering a conceptual understanding of its evolution. A clear distinction is drawn between endogenous probiotics, naturally resident in the human microbiome, and exogenous probiotics, introduced via dietary supplements and functional foods.

View Article and Find Full Text PDF

Nisin-like biosynthetic gene clusters are widely distributed across microbiomes.

mBio

September 2025

APC Microbiome Ireland, Biosciences Institute, Biosciences Research Institute, University College, Cork, Ireland.

Bacteriocins are antimicrobial peptides/proteins that can have narrow or broad inhibitory spectra and remarkable potency against clinically relevant pathogens. One such bacteriocin that is extensively used in the food industry and with potential for biotherapeutic application is the post-translationally modified peptide, nisin. Recent studies have shown the impact of nisin on the gastrointestinal microbiome, but relatively little is known of how abundant nisin production is in nature, the breadth of existing variants, and their antimicrobial potency.

View Article and Find Full Text PDF

Teaching critical histories of microbiology: two case studies.

J Microbiol Biol Educ

September 2025

Department of History and Nelson Institute of Environmental Studies, University of Wisconsin-Madison, Madison, Wisconsin, USA.

In recent years, microbiologists have emphasized the importance of understanding the historical relation between microbiomes and public health as a means of contributing to social equity. Consistent with critical engaged and anti-racist pedagogical practices, we developed a curricular intervention--that centers critical histories of science as means to educate scientists about how science has contributed to and replicated inequities in society. Here, we describe two case studies that our interdisciplinary team designed, implemented, and assessed specifically for a module on the history of microbiology.

View Article and Find Full Text PDF

The UFD-1 (ubiquitin fusion degradation 1)-NPL-4 (nuclear protein localization homolog 4) heterodimer is involved in extracting ubiquitinated proteins from several plasma membrane locations, including the endoplasmic reticulum. This heterodimer complex helps in the degradation of ubiquitinated proteins via the proteasome with the help of the AAA+ATPase CDC-48. While the ubiquitin-proteasome system is known to have important roles in maintaining innate immune responses, the role of the UFD-1-NPL-4 complex in regulating immunity remains elusive.

View Article and Find Full Text PDF

Cancer is a multifaceted disease driven by a complex interplay of genetic predisposition, environmental factors and lifestyle habits. With the accelerating pace of cancer research, the gut microbiome has emerged as a critical modulator of human health and immunity. Disruption in the gut microbial populations and diversity, known as dysbiosis, has been linked with the development of chronic inflammation, oncogenesis, angiogenesis and metastasis.

View Article and Find Full Text PDF