An online, non-destructive method for simultaneously detecting chemical, biological, and physical properties of herbal injections using hyperspectral imaging with artificial intelligence.

Spectrochim Acta A Mol Biomol Spectrosc

Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China. Electronic address:

Published: January 2022


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Botanical drugs hold great potential to prevent and treat complex diseases. Quality control is essential in ensuring the safety, efficacy, and therapeutic consistency of these drug products. The quality of a botanical drug product can be assessed using a variety of analytical methods based on criteria that judge the identity, strength, purity, and potency. However, most of these methods are developed on separate analytical platforms, and few approaches are available for in-process monitoring of multiple quality properties in a non-destructive manner. Here, we present a hyperspectral imaging-based strategy for online measurement of physical, chemical, and biological properties of botanical drugs using artificial intelligence algorithms. An end-to-end convolutional neural network (CNN) model was established to accurately determine phytochemicals and bioactivities based on the spectra. Besides, a new dual-scale anomaly (DSA) detection algorithm was proposed for visible particle inspection based on the images. The strategy was exemplified on Shuxuening Injection, a Ginkgo biloba-derived drug used in the treatment of cerebrovascular and cardiovascular diseases. Four quality metrics of the injection, including total flavonol, total ginkgolides, antioxidant activity, and anticoagulant activity, were successfully predicted by the CNN model with validation R of 0.922, 0.921, 0.880, and 0.913 respectively, showing better performance than the other models. Unqualified samples with visible particles could be detected by DSA with a low false alarm rate of 9.38 %. Chromaticity results indicated that the inter-company variations of color were significant, while intra-company variations were relatively small. This demonstrates a real application of integrating hyperspectral imaging with artificial intelligence to provide a rapid, accurate, and non-destructive approach for process analysis of botanical drugs.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.saa.2021.120250DOI Listing

Publication Analysis

Top Keywords

artificial intelligence
12
botanical drugs
12
chemical biological
8
hyperspectral imaging
8
imaging artificial
8
diseases quality
8
cnn model
8
online non-destructive
4
non-destructive method
4
method simultaneously
4

Similar Publications

Cognitive impairment and dementia, including Alzheimer's disease (AD), pose a global health crisis, necessitating non-invasive biomarkers for early detection. This review highlights the retina, an accessible extension of the central nervous system (CNS), as a window to cerebral pathology through structural, functional, and molecular alterations. By synthesizing interdisciplinary evidence, we identify retinal biomarkers as promising tools for early diagnosis and risk stratification.

View Article and Find Full Text PDF

Introduction: Vision language models (VLMs) combine image analysis capabilities with large language models (LLMs). Because of their multimodal capabilities, VLMs offer a clinical advantage over image classification models for the diagnosis of optic disc swelling by allowing a consideration of clinical context. In this study, we compare the performance of non-specialty-trained VLMs with different prompts in the classification of optic disc swelling on fundus photographs.

View Article and Find Full Text PDF

Artificial intelligence (AI) is a technique or tool to simulate or emulate human "intelligence." Precision medicine or precision histology refers to the subpopulation-tailored diagnosis, therapeutics, and management of diseases with its sociocultural, behavioral, genomic, transcriptomic, and pharmaco-omic implications. The modern decade experiences a quantum leap in AI-based models in various aspects of daily routines including practice of precision medicine and histology.

View Article and Find Full Text PDF

Immunotherapies for Aging and Age-Related Diseases: Advances, Pitfalls, and Prospects.

Research (Wash D C)

September 2025

NHC Key Laboratory of Tropical Disease Control, School of Life Sciences and Medical Technology, Hainan Medical University, Haikou, Hainan 571199, China.

Aging is characterized by a gradual decline in the functionality of all the organs and tissues, leading to various diseases. As the global population ages, the urgency to develop effective anti-aging strategies becomes increasingly critical due to the growing severity of associated health problems. Immunotherapy offers novel and promising approaches to combat aging by utilizing approaches including vaccines, antibodies, and cytokines to target specific aging-related molecules and pathways.

View Article and Find Full Text PDF

Deep learning has rapidly emerged as a promising toolkit for protein optimization, yet its success remains limited, particularly in the realm of activity. Moreover, most algorithms lack rigorous iterative evaluation, a crucial aspect of protein engineering exemplified by classical directed evolution. This study introduces DeepDE, a robust iterative deep learning-guided algorithm leveraging triple mutants as building blocks and a compact library of ∼1,000 mutants for training.

View Article and Find Full Text PDF