Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Lymphatic dysfunction is associated with the progression of several vascular disorders, though currently, there are limited strategies to promote new lymphatic vasculature (i.e., lymphangiogenesis) to restore lost lymphatic function. One promising approach to stimulate lymphangiogenesis involves delivering endothelial progenitor cells (EPCs), which are naturally involved in de novo blood vessel formation and have recently been identified to include a lymphatic subpopulation. However, the contribution of lymphatic EPCs in lymphangiogenesis is not clear and challenges with maintaining the activity of transplanted EPCs remain. Thus, the objective of this study was to isolate lymphatic EPCs from human umbilical cord blood and characterize their role in the initial stages of blood or lymphatic vasculature formation. Furthermore, this study also tested the applicability of alginate hydrogels to deliver lymphatic EPCs for a possible therapeutic application. We postulated and confirmed that blood and lymphatic EPC colonies could be isolated from human umbilical cord blood. Additionally, EPC populations responded to either angiogenic or lymphangiogenic growth factors and could stimulate their respective mature endothelial cells in vasculature models in vitro. Finally, lymphatic EPCs maintained their ability to promote lymphatic sprouts after prolonged interactions with the alginate hydrogel microenvironment. These results suggest EPCs have both a blood and a lymphatic population that have specific roles in promoting revascularization and highlight the potential of alginate hydrogels for the delivery of lymphatic EPCs. STATEMENT OF SIGNIFICANCE: Despite the potential therapeutic benefit of promoting lymphatic vasculature, lymphangiogenesis remains understudied. One appealing strategy for promoting lymphangiogenesis involves delivering lymphatic endothelial progenitor cells (EPCs), which are a subpopulation of EPCs involved in de novo vessel formation. Here, we investigate the role of isolated blood and lymphatic EPC subpopulations in promoting the early stages of vascularization and the utility of alginate hydrogels to deliver lymphatic EPCs. We determined that EPCs had two populations that expressed either blood or lymphatic markers, could stimulate their respective mature vasculature in tissue constructs and that alginate hydrogels maintained the therapeutic potential of lymphatic EPCs. We anticipate this work could support promising biomaterial applications of EPCs to promote revascularization, which could have many therapeutic applications.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.actbio.2021.08.005DOI Listing

Publication Analysis

Top Keywords

lymphatic epcs
28
lymphatic
20
blood lymphatic
20
alginate hydrogels
16
epcs
14
endothelial progenitor
12
progenitor cells
12
lymphatic vasculature
12
lymphatic endothelial
8
potential therapeutic
8

Similar Publications

Background: The discovery of immune checkpoints links autoimmunity and cancer, with thymus atrophy reportedly causing autoimmune multiorgan inflammation. The impact of cancer cachexia on thymic involution and its clinical significance remains unclear. This study aimed to investigate this effect and its association with immune checkpoint inhibitor (ICI) treatment.

View Article and Find Full Text PDF

Mesenchymal stem cells (MSCs) can participate in lymphangiogenesis through paracrine effects, while lymphatic endothelial progenitor cells (LEPCs), a subpopulation of endothelial progenitor cells (EPCs), can differentiate into mature lymphatic endothelial cells, thereby influencing lymphatic function. In the present study, we investigated the mechanism by which MSCs regulate the activity of LEPCs through paracrine effects and preliminarily explored the possibility of the two types of cells working together to treat lymphovascular diseases. After isolation of MSCs and LEPCs from the bone marrow of C57BL/6 J mice, experiments verified that insulin-like growth factor 1 (IGF-1) secreted by MSCs activated the PI3K/Akt/mTOR pathway to promote the proliferation of LEPCs; IGF-1 decreased the rate of apoptosis and affected the cycle progression of LEPCs and the nucleotide metabolism levels.

View Article and Find Full Text PDF

Erythroid progenitor cell-mediated spleen-tumor interaction deteriorates cancer immunity.

Proc Natl Acad Sci U S A

March 2025

State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China.

Understanding both local and systemic immunity is essential to optimizing the effectiveness of immunotherapy. However, the dynamic alterations in systemic immunity during tumor development are yet to be clearly defined. Here, we identified a previously unrecognized connection that bridges the interaction between the spleen and tumor through erythroid progenitor cells (EPCs), which suppress tumor immunity and promote tumor progression.

View Article and Find Full Text PDF

A comprehensive understanding of the cardio-spleen-bone marrow immune cell axis is essential for elucidating the alterations occurring during the pathogenesis of diabetes mellitus (DM). This study investigates the dynamics of immune cell kinetics in DM after myocardial infarction (MI) over time. MI was induced in diabetic and healthy control groups using C57BL/N6 mice, with sacrifices occurring at days 1, 3, 7, and 28 post-MI to collect heart, peripheral blood (PB), spleen, and bone marrow (BM) samples.

View Article and Find Full Text PDF

Background And Aims: Specific mechanisms of lymph node (LN) metastasis in early-stage gastric cancer (GC) have not been elucidated. The role of anemia, a vital clinical feature of GC, in LN metastasis is also unclear. Since the number of erythroid progenitor cells (EPCs) is increased in chronic anemia, we investigated its association with LN metastasis in GC.

View Article and Find Full Text PDF