98%
921
2 minutes
20
Embolic stroke results in a necrotic core of cells destined to die, but also a peri-ischemic, watershed penumbral region of potentially salvageable brain tissue. Approaches to effectively differentiate between the ischemic and peri-ischemic zones is critical for novel therapeutic discovery to improve outcomes in survivors of stroke. MicroRNAs are a class of small non-coding RNAs regulating gene translation that have region- and cell-specific expression and responses to ischemia. We have previously reported that global inhibition of cerebral microRNA-200c after experimental stroke in mice is protective, however delineating the post-stroke sub-regional and cell-type specific patterns of post-stroke miR-200c expression are necessary to minimize off-target effects and advance translational application. Here, we detail a novel protocol to visualize regional miR-200c expression after experimental stroke, complexed with visualization of regional ischemia and markers of oxidative stress in an experimental stroke model in mice. In the present study we demonstrate that the fluorescent hypoxia indicator pimonidazole hydrochloride, the reactive-oxygen-species marker 8-hydroxy-deoxyguanosine, neuronal marker MAP2 and NeuN, and the reactive astrocyte marker GFAP can be effectively complexed to determine regional differences in ischemic injury as early as 30 min post-reperfusion after experimental stroke, and can be effectively used to distinguish ischemic core from surrounding penumbral and unaffected regions for targeted therapy. This multi-dimensional post-stroke immunofluorescent imaging protocol enables a greater degree of sub-regional mechanistic investigation, with the ultimate goal of developing more effective post-stroke pharmaceutical therapy.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8387456 | PMC |
http://dx.doi.org/10.1016/j.neuint.2021.105146 | DOI Listing |
Anatol J Cardiol
September 2025
Danish Cancer Institute, Danish Cancer Society, Denmark;Department of Natural Science and Environment, Roskilde University, Roskilde, Denmark.
Environmental noise, particularly from road, rail, and aircraft traffic, is now firmly recognized as a widespread risk factor for cardiovascular disease. About 1 in 3 Europeans is exposed to chronic noise exposure above the guideline thresholds recommended by the World Health Organization (WHO), thus contributing substantially to cardiovascular morbidity and mortality. Robust evidence from recent meta-analyses links transportation noise to ischemic heart disease, heart failure, stroke, hypertension, and type 2 diabetes mellitus.
View Article and Find Full Text PDFJ Biochem Mol Toxicol
September 2025
Department of Rehabilitation Medicine, Hebei Engineering University Affiliated Hospital, Handan, Hebei, China.
Blood-Brain Barrier (BBB) dysfunction acts as a key mediator of ischemic brain injury, contributing to brain edema, inflammatory cell infiltration, and neuronal damage. The integrity of the BBB is largely maintained by tight junction proteins, such as Claudin-5, and its disruption exacerbates neurological deficits. Neurokinin B (NKB), a neuropeptide that belongs to the tachykinin family, has been implicated in various physiological processes, including neuroinflammation and vascular function.
View Article and Find Full Text PDFBrain Commun
August 2025
Nuffield Department of Clinical Neuroscience, University of Oxford, Oxford OX3 9DU, UK.
Understanding the cognitive trajectory of a neurological disease can provide important insight on underlying mechanisms and disease progression. Cognitive impairment is now well established as beginning many years before the diagnosis of Alzheimer's disease, but pre-diagnostic profiles are unclear for other neurological conditions that may be associated with cognitive impairment. We analysed data from the prospective UK Biobank cohort with study baseline assessment performed between 2006 and 2010 and participants followed until 2021.
View Article and Find Full Text PDFPhytomedicine
August 2025
Cardiology Department, Affiliated Hospital of Jiangxi University of Chinese Medicine, Nanchang, China. Electronic address:
Background: Atherosclerosis (AS) is a leading risk factor for cardiovascular diseases globally, characterised by the accumulation of lipids and cholesterol in arterial walls, causing vascular narrowing and sclerosis along with chronic inflammation; this leads to increased risk of heart disease and stroke, significantly impacting patients' health. Danxia Tiaoban Decoction (DXTB), a traditional Chinese medicine (TCM) formula, has demonstrated positive clinical effects in treating AS; however, its mechanisms of action remain unclear.
Objective: To explore the potential mechanisms of action of DXTB in treating AS through multi-omics integration and experimental validation.
J Ethnopharmacol
September 2025
Ethnopharmacological Relevance: Fujian Tablet (FJT), a traditional Chinese herbal compound formulation developed under the theoretical framework of "nourishing the liver and kidney, replenishing essence and marrow" , has been clinically applied for over two decades to treat post-stroke neurological deficits. Preliminary studies demonstrated its efficacy in improving motor function and promoting cervical spinal cord neuroaxonal growth in a middle cerebral artery occlusion (MCAO) rat model. Building upon these findings, this study integrates metabolomic evidence of Foxo3a-GPX4 axis activation to systematically elucidate Fujian Tablet's neurorestorative mechanisms through three interconnected pathways: regulation of ferroptosis, promotion of oligodendrocyte proliferation, and remyelination.
View Article and Find Full Text PDF