98%
921
2 minutes
20
Background: Porcine reproductive and respiratory syndrome virus (PRRSV) infection can cause severe reproductive failure in sows and respiratory distress in pigs of all ages, leading to major economic losses. To date, there are still no effective strategies to prevent and control PRRSV. Antibody-dependent enhancement (ADE), a phenomenon in which preexisting non-neutralizing antibodies or sub-neutralizing antibodies facilitate virus entry and replication, may be a significant obstacle in the development of effective vaccines for many viruses, including PRRSV. However, the contribution of ADE to PRRSV infection remains controversial, especially in vivo. Whether attenuated PRRSV vaccines prevent or worsen subsequent disease in pigs infected by novel PRRSV strains requires more research. In the present study, in vivo experiments were conducted to evaluate ADE under different immune statuses, which were produced by waiting different lengths of time after vaccination with a commercially available attenuated highly pathogenic PRRSV (HP-PRRSV) vaccine (JXA1-R) before challenging the pigs with a novel heterologous NADC30-like strain.
Results: Piglets that were vaccinated before being challenged with PRRSV exhibited lower mortality rates, lower body temperatures, higher bodyweight gain, and lower viremia. These results demonstrate that vaccination with JXA1-R alleviated the clinical signs of PRRSV infection in all vaccinated groups.
Conclusions: The obtained data indicate that the attenuated vaccine test here provided partial protection against the NADC30-like strain HNhx. No signs of enhanced PRRSV infection were observed under the applied experimental conditions. Our results provide some insight into the molecular mechanisms underlying vaccine-induced protection or enhancement in PRRSV.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8325048 | PMC |
http://dx.doi.org/10.1186/s12917-021-02957-z | DOI Listing |
Adv Sci (Weinh)
September 2025
College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, China.
Porcine reproductive and respiratory syndrome virus (PRRSV) imposes substantial economic losses on global swine production. While modified live vaccines remain the primary prevention tool, their efficacy is compromised by the genetic variability of PRRSV. This study developed a broadly neutralizing monoclonal antibody (mAb) that targets a conserved viral epitope as an alternative therapeutic strategy.
View Article and Find Full Text PDFTransl Anim Sci
May 2025
Carthage Veterinary Service Ltd., Carthage, IL 62321, USA.
Soybean meal (SBM) contains many bioactive compounds, such as isoflavones, which possess anti-inflammatory and anti-oxidative properties that may provide nutritional intervention to pigs infected with porcine reproductive and respiratory syndrome virus (PRRSv). The disease results in abortions, stillborn piglets, and overall impairs reproductive success in sows. Today, there are no data available on feeding SBM to sows infected with PRRSv to mitigate the negative impacts of PRRSv on sow and litter performance.
View Article and Find Full Text PDFFront Microbiol
August 2025
Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China.
Porcine reproductive and respiratory syndrome virus (PRRSV) has caused tremendous economic losses in the swine industry since emerging in the late 1980s. Although vaccination has been widely used to control PRRS epidemics in Chinese pig farms, they provided limited protection against PRRSV transmission; moreover, no effective therapeutic drugs are available. Therefore, there is an urgent need to develop novel antiviral strategies to control PRRSV epidemics.
View Article and Find Full Text PDFThe status of co-infection with porcine reproductive and respiratory syndrome virus type 1 (PRRSV-1) and type 2 (PRRSV-2) in Japan is poorly understood. A case of such co-infection was identified on a PRRSV-1 non-vaccinated farm in Kagoshima prefecture. Both PRRSV-1 and PRRSV-2 genomes were simultaneously detected in pig samples by RT-PCR, and molecular analysis confirmed PRRSV-1/PRRSV-2 co-infection in individual piglets.
View Article and Find Full Text PDFMicrob Pathog
September 2025
Laboratory of Pharmacobiology, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China. Electronic address:
Lipid profile of spleen and bursa of Fabricius (BF) during acute infection remains unknown. Acute infection models of porcine reproductive and respiratory syndrome virus (PRRSV), porcine epidemic diarrhea virus (PEDV) and Eimeria tenella (ET) were developed, and spleen samples with African swine fever virus (ASFV) or not were collected. Spleen and BF were examined and characteristic microscopic lesions were observed.
View Article and Find Full Text PDF