Contribution of NMDA Receptors to Synaptic Function in Rat Hippocampal Interneurons.

eNeuro

Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh EH8 9XD, United Kingdom.

Published: September 2021


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The ability of neurons to produce behaviorally relevant activity in the absence of pathology relies on the fine balance of synaptic inhibition to excitation. In the hippocampal CA1 microcircuit, this balance is maintained by a diverse population of inhibitory interneurons that receive largely similar glutamatergic afferents as their target pyramidal cells, with EPSCs generated by both AMPA receptors (AMPARs) and NMDA receptors (NMDARs). In this study, we take advantage of a recently generated GluN2A-null rat model to assess the contribution of GluN2A subunits to glutamatergic synaptic currents in three subclasses of interneuron found in the CA1 region of the hippocampus. For both parvalbumin-positive and somatostatin-positive interneurons, the GluN2A subunit is expressed at glutamatergic synapses and contributes to the EPSC. In contrast, in cholecystokinin (CCK)-positive interneurons, the contribution of GluN2A to the EPSC is negligible. Furthermore, synaptic potentiation at glutamatergic synapses on CCK-positive interneurons does not require the activation of GluN2A-containing NMDARs but does rely on the activation of NMDARs containing GluN2B and GluN2D subunits.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8362681PMC
http://dx.doi.org/10.1523/ENEURO.0552-20.2021DOI Listing

Publication Analysis

Top Keywords

nmda receptors
8
contribution glun2a
8
glutamatergic synapses
8
cck-positive interneurons
8
interneurons
5
contribution nmda
4
synaptic
4
receptors synaptic
4
synaptic function
4
function rat
4

Similar Publications

Major depressive disorder affects millions worldwide, yet current treatments require prolonged administration. In contrast, ketamine produces rapid antidepressant effects by blocking spontaneous N-Methyl-D-Aspartate (NMDA) receptor signaling, which lifts the suppression of protein synthesis and triggers homeostatic synaptic plasticity. Here, we identify a parallel signaling pathway involving metabotropic glutamate receptor 5 (mGluR5) that promotes rapid antidepressant-like effects.

View Article and Find Full Text PDF

Excitatory glycine receptors control ventral hippocampus synaptic plasticity and anxiety-related behaviors.

Proc Natl Acad Sci U S A

September 2025

Institut de Biologie de l'Ecole Normale Supérieure, Ecole Normale Supérieure, Université Paris Sciences et Lettres, Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, Paris 75005, France.

Excitatory glycine receptors (eGlyRs), composed of the glycine-binding NMDA receptor subunits GluN1 and GluN3A, have recently emerged as a novel neuronal signaling modality that challenges the traditional view of glycine as an inhibitory neurotransmitter. Unlike conventional GluN1/GluN2 NMDARs, the distribution and role of eGlyRs remain poorly understood. Here, we show that eGlyRs are highly enriched in the ventral hippocampus (VH) and confer distinct properties on this brain region.

View Article and Find Full Text PDF

Background: Readily available treatments for Alzheimer's disease and related dementia (ADRD) include acetylcholinesterase inhibitors and N-methyl-D-aspartate receptor antagonists. Non-adherence and early discontinuation of anti-dementia medications are prevalent issues. We aimed to investigate factors associated with suboptimal usage of anti-dementia medications in ADRD.

View Article and Find Full Text PDF

Objectives: To clarify the role of hippocampal glutamate system in regulating HPA axis in mediating the effect of electroacupuncture (EA) at the heart meridian for improving myocardial injury in rats with acute myocardial ischemia (AMI).

Methods: Male SD rats were randomized into sham-operated group, AMI group, EA group, and L-glutamic acid+EA group (=9). Rat models of AMI were established by left descending coronary artery ligation, and EA was applied at the "Shenmen-Tongli" segment; the rats in L-glutamic acid+EA group were subjected to microinjection of L-glutamic acid into the bilateral hippocampus prior to AMI modeling and EA treatment.

View Article and Find Full Text PDF

Neuroinflammatory Consequences of Rhinovirus Infection in Human Epithelial and Neuronal Models.

Lung

September 2025

The Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, 97 Lisburn Road, Belfast, Belfast BT9 7BL, UK.

Introduction: Rhinovirus (RV) is the leading cause of exacerbations of lung disease. A sensory neuronal model, derived from human dental pulp stem cells and differentiated into peripheral neuronal equivalents (PNEs), was used to examine RV's effects on airway sensory nerves. We investigated whether RV can directly infect and alter PNEs or whether it exerts effects indirectly via the release of mediators from infected epithelial cells.

View Article and Find Full Text PDF