Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Long-term surface application of lime (L) and/or phosphogypsum (PG) in no-till (NT) systems can improve plant growth and physiological and biochemical processes. Although numerous studies have examined the effects of L on biomass and plant growth, comprehensive evaluations of the effects of this practice on net CO assimilation, antioxidant enzyme activities and sucrose synthesis are lacking. Accordingly, this study examined the effects of long-term surface applications of L and PG on soil fertility and the resulting impacts on root growth, plant nutrition, photosynthesis, carbon and antioxidant metabolism, and grain yield (GY) of maize established in a dry winter region. At the study site, the last soil amendment occurred in 2016, with the following four treatments: control (no soil amendments), L (13 Mg ha), PG (10 Mg ha), and L and PG combined (LPG). The long-term effects of surface liming included reduced soil acidity and increased the availability of P, Ca, and Mg throughout the soil profile. Combining L with PG strengthened these effects and also increased SO -S. Amendment with LPG increased root development at greater depths and improved maize plant nutrition. These combined effects increased the concentrations of photosynthetic pigments and gas exchange even under low water availability. Furthermore, the activities of Rubisco, sucrose synthase and antioxidative enzymes were improved, thereby reducing oxidative stress. These improvements in the physiological performance of maize plants led to higher GY. Overall, the findings support combining soil amendments as an important strategy to increase soil fertility and ensure crop yield in regions where periods of drought occur during the cultivation cycle.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8313040PMC
http://dx.doi.org/10.3389/fpls.2021.650296DOI Listing

Publication Analysis

Top Keywords

soil fertility
12
soil
8
root growth
8
long-term surface
8
plant growth
8
examined effects
8
plant nutrition
8
soil amendments
8
effects increased
8
effects
7

Similar Publications

Nanoparticles (NPs) have emerged as transformative agents in agriculture, offering promising applications in nanofertilizers, nanopesticides, and soil amendments. However, significant knowledge gaps persist regarding the long-term impact of engineered NPs on soil health, including microbial networks and biogeochemical fluxes. Despite their potential to enhance nutrient use efficiency, promote crop resilience, and support sustainable farming, the interactions of NPs with soil matrices, especially their transformations, persistence, and ecological implications, are not fully explored.

View Article and Find Full Text PDF

A sensitive smartphone-based method for measuring phosphate in biological samples and ATPase activities.

Talanta

August 2025

Universidad de Buenos Aires. Facultad de Farmacia y Bioquímica. Departamento de Química Biológica, Junín 956, Buenos Aires, Argentina; Laboratorio de Biofísica Molecular, Instituto de Química y Fisicoquímica Biológicas, UBA - CONICET, Junín 956, Buenos Aires, Argentina. Electronic address:

The quantification of orthophosphate is essential for applications like water quality assessment, soil fertility analysis, metabolic monitoring and enzyme activity evaluation. Chemical quantification methods include the reaction between orthophosphate and molybdate under acidic conditions to form 12-molybdophosphoric acid units, which auto-assembles forming nanometer size particles. The adsorption of malachite green to these nanoparticles allows their spectrophotometric detection constituting one of the most widely used methods to quantify phosphate.

View Article and Find Full Text PDF

Molecular-level insights into directional condensation mechanism of phenolic acids during humic substance formation.

Bioresour Technol

September 2025

Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, Tianjin 300387, China. Electronic address:

The regulation of humic substance formation during aerobic fermentation of organic solid waste has gradually become a research hotspot in related fields. The metabolic byproducts of lignocellulose have the potential to act as precursors for the synthesis of humic substances. This study, grounded in a robust framework of metabolic intermediate indicators, selected representative pure phenolic acid intermediates to conduct condensation experiments.

View Article and Find Full Text PDF

Soil green algae play a crucial role in terrestrial ecosystems and enhance soil health. However, research on algal diversity and ecology in crop field soils, particularly in untilled perennial tree plantations, is scarce, and the factors influencing algal contributions to soil health and fertility management are not well understood. Therefore, an extensive study was conducted on the ecology and diversity of green algae in rubber crop plantations in South India, spanning diverse agroclimatic zones, soil orders, soil series, and seasons.

View Article and Find Full Text PDF

Solar-driven interfacial evaporation (SDIE) is an emerging eco-friendly and low-carbon technology and has been widely studied in the field of photothermal applications in recent years. With the attention and development of SDIE in innovation fields, new strategies, structures, and typical materials are gradually being developed and applied. Therefore, it is important to report on these latest developments.

View Article and Find Full Text PDF