98%
921
2 minutes
20
Musculoskeletal soft connective tissues are commonly injured due to repetitive use, but the evolution of mechanical damage to the tissue structure during repeated loading is poorly understood. We investigated the strain-rate dependence of mechanical denaturation of collagen as a form of structural microdamage accumulation during creep fatigue loading of rat tail tendon fascicles. We cycled tendons at three strain rates to the same maximum stress relative to their rate-dependent tensile strength. Collagen denaturation at distinct points during the fatigue process was measured by fluorescence quantification of collagen hybridizing peptide binding. The amount of collagen denaturation was significantly correlated with fascicle creep strain, independent of the cyclic strain rate, supporting our hypothesis that tissue level creep is caused by collagen triple-helix unfolding. Samples that were loaded faster experienced more creep strain and denaturation as a function of the number of loading cycles relative to failure. Although this increased damage capacity at faster rates may serve as a protective measure during high-rate loading events, it may also predispose these tissues to subsequent injury and indicate a mechanism of overuse injury development. These results build on evidence that molecular-level collagen denaturation is the fundamental mechanism of structural damage to tendons during tensile loading. STATEMENT OF SIGNIFICANCE: This study is the first to investigate the accumulation of denatured collagen in tendons throughout fatigue loading when the maximum stress is scaled with the applied strain rate. The amount of denatured collagen was correlated with creep strain, independent of strain rate, but samples that were cycled faster withstood greater amounts of denaturation before failure. Differential accumulation of collagen damage between fast and slow repetitive loading has relevance toward understanding the prevalence of overuse musculoskeletal injuries following sudden changes in activity level. Since collagen is a ubiquitous biological structural component, the basic patterns and mechanisms of loading-induced collagen damage in connective tissues are relevant for understanding injury and disease in other tissues, including those from the cardiovascular and pulmonary systems.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8941880 | PMC |
http://dx.doi.org/10.1016/j.actbio.2021.07.045 | DOI Listing |
ACS Appl Mater Interfaces
September 2025
School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, China.
The development of anode materials for lithium-ion batteries must meet the demands for high safety, high energy density, and fast-charging performance. TiNbO is notable for its high theoretical specific capacity, low structural strain, and exceptional fast-charging capability, attributed to its Wadsley-Roth crystal structure. However, its inherently poor conductivity has hindered its practical application.
View Article and Find Full Text PDFBull Math Biol
September 2025
Department of Mathematics, Siena University, 515 Loudon Road, Loudonville, NY, 12211, USA.
Autonomous differential equation compartmental models hold broad utility in epidemiology and public health. However, these models typically cannot account explicitly for myriad factors that affect the trajectory of infectious diseases, with seasonal variations in host behavior and environmental conditions as noteworthy examples. Fortunately, using non-autonomous differential equation compartmental models can mitigate some of these deficiencies, as the inclusion of time-varying parameters can account for temporally varying factors.
View Article and Find Full Text PDFMicrobiol Spectr
September 2025
Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, Florida, USA.
Unlabelled: (SA) colonizes most mammals but also represents a danger in clinical settings because it evolves resistance against antibiotics, and SA infections represent a leading cause of death worldwide. SA nasal carriage provides the bacterial reservoir for opportunistic infection because clinical strains often match the patient's own nasally carried strain. The global SA carriage rate is typically reported as 25%-30% after sampling subjects once or twice and defining carrier status using culture-based methods.
View Article and Find Full Text PDFCardiol Rev
September 2025
Departments of Cardiology and Medicine, Westchester Medical Center and New York Medical College, Valhalla, NY.
Sepsis remains a leading cause of critical illness and mortality worldwide, driven by a dysregulated host response to infection and often complicated by persistent tachycardia and cardiovascular dysfunction. Increasing evidence implicates excessive sympathetic activation as a contributor to sepsis-related hemodynamic instability and myocardial injury, prompting growing interest in the use of β-adrenergic blockade as a therapeutic adjunct. This review synthesizes current data on the safety and efficacy of short-acting, cardioselective β-blockers (BBs), particularly esmolol and landiolol, in septic shock.
View Article and Find Full Text PDFVet Anim Sci
December 2025
Hunan Provincial Key Laboratory of the Traditional Chinese Medicine Agricultural Biogenomics, Changsha Medical University, Changsha 410219, China.
Muscovy duck reovirus (MDRV) and Novel duck reovirus (NDRV) are highly infectious diseases of waterfowl, causing significant harm to the global poultry industry. Early detection and diagnosis of NDRV and MDRV in clinical samples are crucial for effectively preventing and controlling these diseases. This study developed a duplex crystal digital PCR (dPCR) assay for the differential detection of NDRV and MDRV.
View Article and Find Full Text PDF