98%
921
2 minutes
20
The specificity of sperm-egg recognition is crucial to species independence, and two proteins (Izumo1 and JUNO) are essential for gamete adhesion/fusion in mammals. However, hybridization, which is very common in turtles, also requires specific recognition of sperm-egg binding proteins. In this study, we discovered that natural selection plays an important role in the codon usage bias of Tu-Izumo1 and Tu-JUNO. Positively selected sites and co-evolutionary analyses between Tu-Izumo1 and Tu-JUNO have been previously reported, and we confirm these results in a larger analysis containing 25 turtle species. We also showed that Tu-JUNO is expressed on the oocyte surface and that Tu-Izumo1 and Tu-JUNO interact with each other directly in different species hybridization combinations. Co-immunization assays revealed that this interaction is evolutionarily conserved in turtles. The results of avidity-based extracellular interaction screening between Tu-Izumo1 and Tu-JUNO for sperm-oocyte binding pairs (both within and across species) likely suggest that the interaction force between Izumo1 and JUNO has a certain correlation in whether the turtles can hybridize. Our results lay a theoretical foundation for the subsequent development of techniques to detect whether different turtle species can interbreed, which would provide the molecular basis for breeding management and species protection of turtles.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1530/REP-21-0124 | DOI Listing |
Reproduction
September 2021
Provincial Key Lab of the Conservation and Exploitation Research of Biological Resources in Anhui, College of Life Sciences, Anhui Normal University, Wuhu, Anhui, China.
The specificity of sperm-egg recognition is crucial to species independence, and two proteins (Izumo1 and JUNO) are essential for gamete adhesion/fusion in mammals. However, hybridization, which is very common in turtles, also requires specific recognition of sperm-egg binding proteins. In this study, we discovered that natural selection plays an important role in the codon usage bias of Tu-Izumo1 and Tu-JUNO.
View Article and Find Full Text PDFMech Dev
April 2019
Provincial Key Lab of the Conservation and Exploitation Research of Biological Resources in Anhui, Life Science College of Anhui Normal University, Wuhu, Anhui, China. Electronic address:
Physically interacting sperm-egg proteins have been identified using gene-modified animals in some mammal species. Three proteins are essential for sperm-egg binding: Izumo1 on the sperm surface, and JUNO and CD9 on the egg surface. Most proteins linked to reproductive function evolve rapidly among species by positive selection, and have correlated evolutionary rates to compensate for changes on both the sperm and egg.
View Article and Find Full Text PDF