Effects of low intensity pulsed ultrasound on expression of B-cell lymphoma-2 and BCL2-Associated X in premature ovarian failure mice induced by 4-vinylcyclohexene diepoxide.

Reprod Biol Endocrinol

State Key Laboratory of Ultrasound in Medicine and Engineering, College of Biomedical Engineering, Chongqing Key Laboratory of Biomedical Engineering, Chongqing Medical University, 400016, Chongqing, China.

Published: July 2021


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Background: Premature ovarian failure (POF) is a common disease in the field of Gynecology. Low intensity pulsed ultrasound (LIPUS) can promote tissue repair and improve function. This study was performed to determine the effects of LIPUS on granulosa cells (GCs) apoptosis and protein expression of B-cell lymphoma-2 (Bcl-2) and BCL2-Associated X (Bax) in 4-vinylcyclohexene diepoxide (VCD)-induced POF mice and investigate the mechanisms of LIPUS on ovarian function and reserve capacity.

Methods: The current POF mice model was administrated with VCD (160 mg/kg) by intraperitoneal injection for 15 consecutive days. The mice were divided into the POF group, LIPUS group and control group. In the LIPUS group, the right ovary of mice was treated by LIPUS (acoustic intensity was 200 mW/cm, frequency was 0.3 MHz, and duty cycle was 20%) for 20 min, 15 consecutive days from day 16. The mice of the POF group and control group were treated without ultrasonic output. The basic observation and body weight were recorded. Hematoxylin and eosin staining (H&E staining) and enzyme-linked immunosorbent assay (ELISA) were applied to detect ovarian follicle development, ovarian morphology and sex hormone secretion. Ovarian GCs apoptosis was detected by TUNEL assay and immunohistochemistry.

Results: The results showed that VCD can induce estrus cycle disorder, follicular atresia, sex hormone secretion decreased and GCs apoptosis in mice to establish POF model successfully. LIPUS significantly promoted follicular development, increased sex hormone secretion, inhibited excessive follicular atresia and GCs apoptosis. The mechanism might be achieved by increasing the protein expression of Bcl-2 and decreasing the expression of Bax in ovaries.

Conclusions: LIPUS can improve the POF induced by VCD. These findings have the potential to provide novel methodological foundation for the future research, which help treat POF patients in the clinic.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8290625PMC
http://dx.doi.org/10.1186/s12958-021-00799-wDOI Listing

Publication Analysis

Top Keywords

gcs apoptosis
16
sex hormone
12
hormone secretion
12
low intensity
8
intensity pulsed
8
pulsed ultrasound
8
expression b-cell
8
b-cell lymphoma-2
8
premature ovarian
8
ovarian failure
8

Similar Publications

The Age-Associated Long Noncoding RNA lnc81 Regulates Ovarian Granulosa Cell Proliferation and Apoptosis Through TEAD2-CCN1/2 Pathway in Mice.

J Cell Physiol

September 2025

Jiangxi Province Key Laboratory of Immunology and Inflammation, Department of Clinical Laboratory, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China.

Ovarian granulosa cells (GCs) are pivotal for follicular homeostasis, and their dysregulated apoptosis drives age-related ovarian aging. The Hippo signaling pathway, modulated by long noncoding RNAs (lncRNAs), is implicated in regulating GCs proliferation and ovarian aging. TEAD2 (Transcriptional Enhanced Associate Domain 2), a key downstream transcription factor of the Hippo signaling pathway, plays a critical role in regulating cell proliferation, apoptosis, and embryonic stem cell self-renewal.

View Article and Find Full Text PDF

GADD45A is Essential for Granulosa Cells Differentiation and Ovarian Reserve in Human and Mice.

J Cell Mol Med

September 2025

Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Chengdu, China.

Diminished ovarian reserve (DOR) poses significant challenges in reproductive health, with emerging evidence implicating DNA damage repair pathways. While GADD45A is a critical regulator of DNA repair, cell cycle and apoptosis, its role in DOR pathogenesis remains unexplored. We employed transcriptome sequencing, qPCR and Western Blot analyses to compare GADD45A expression in granulosa cells (GCs) between DOR patients and controls.

View Article and Find Full Text PDF

Steroid-induced osteonecrosis of the femoral head (SONFH) is avascular necrosis of the femoral head caused by long-erm use of corticosteroids, and its pathogenesis is complex and affected by changes in the dynamic balance of the bone microenvironment. With the deepening of research, the role of bone microenvironment in the pathogenesis of SONFH has been gradually revealed. In the case of excessive use of glucocorticoids (GCs), the bone microenvironment changes significantly, causing imbalance in bone lipid metabolism, microcirculation disorders and disorders of immune regulation, which promotes the increase of the number and activity of osteoclasts, and interferes with the differentiation of osteoblasts and adipoblasts.

View Article and Find Full Text PDF

Introduction: The present study was undertaken to elucidate the expression status and molecular mechanism underlying microRNA-3127-5p (miR-3127-5p) in polycystic ovary syndrome (PCOS).

Material And Methods: A total of 50 PCOS and 50 non-PCOS patients were recruited as research subjects. Quantitative real-time polymerase chain reaction was employed to assess the relative abundances of miR-3127-5p in serum, cumulus cells (CCs), and granulosa cells (GCs) from PCOS patients.

View Article and Find Full Text PDF

Oxidative Stress Triggers Porcine Ovarian Granulosa Cell Apoptosis Through MAPK Signaling.

Antioxidants (Basel)

August 2025

Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China.

Follicle health determines the number and quality of sows' ovulation, thereby influencing the litter size and the piglets' viability. Granulosa cells (GCs) play a crucial role in follicular formation and development, and oxidative stress-induced GC death is a major cause of follicular dysplasia. Previous studies have confirmed that oxidative stress triggers apoptosis in granulosa cells.

View Article and Find Full Text PDF